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I. Moral Hazard - I.1. Introduction

Principal - Agent model as the elementary block to build up
models of transactions under asymmetric information

Principal, who lacks information, proposes a setting for the
transaction

Agent, who is informed, accepts or refuses the transaction
setting

If agreement, the transaction is implemented

Previously: incomplete information or screening, i.e. missing
information on some exogenous parameters

Today: imperfect information or moral hazard, i.e. missing in-
formation about some endogenous variables (Agent’s decisions)
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I.1. Introduction

Principal - Agent relationship: Agent takes payoff-relevant action
in exchange of a reward / compensation.

When there is no issue:

Principal does not care about the action: let Agent do his
job and compensate him for the opportunity cost

Agent does not care about the action: Agent takes action
prefered by Principal if compensated for his opportunity cost

No observable variable available: the Agent takes his pref-
ered action and is compensated for his opportunity cost

Perfect information about the action: Principal imposes her
prefered action taking into account the Agent’s compensa-
tion for his opportunity cost

So assume actions impact both players’ utilities and there is an
imperfect signal about the actions undertaken.
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I.1. Introduction

Wide applicability of moral hazard model:

Insurance company / insured agent

Employer / employee: provide incentives to the employee so
that he takes profit-enhancing actions that are costly to him

Shareholders / CEO: induce the manager to implement projects
that enhance the firm value and not his own private benefits

Plaintiff / attorney: induce attorney to expend costly effort
to increase plaintiff’s chances of prevailing at trial (also all
expertise relationships)

Homeowner / contractor: induce contractor to complete work
on time by expending appropriate but costly effort

Landowner / farmer: induce farmer to grow crops and pre-
serve soil quality, sharecropping...
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I.2. Road map for today

Canonical two-action model:

General presentation

Cost-minimizing contract implementing a given action

Optimal contract and inefficiency result

General (discrete) framework:

Existence and general inefficiency theorem

About monotonicity

Sufficient statistics theorem and information structures

Discussion: first-order approach, asymptotic efficiency

Dynamic issues: memory, savings

Applications:

Linear schemes in Holmström-Milgron: Multitask schemes
and organizational design

Limited Liability models: Corporate finance
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I.2. Canonical setting

Transaction between Principal and Agent:

Agent takes a transaction-relevant action a ∈ A compact in
R+, unobservable by any other party

Observable signal, i.e. random variable x ∈ X ⊂ R

a affects the signal: conditional cdf or proba (if finite) of x
given a: Fa(x).

The other part of the transaction is an observable and con-
tractable action by Principal: payment w ∈ R

Principal often assumed risk-neutral: V = x− w
Agent’s risk-averse preferences: U = u(w)− C(a), u(.) con-
cave increasing unbounded, C(.) convex increasing (separa-
bility is a strong and important assumption)
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I.2. Canonical setting

Principal proposes a compensation mode, called a contract: spec-
ifies how w is determined based on variables that can be observed
without ambiguity by both parties and a lawyer who would en-
force the contract

These variables are called verifiable, or contractible variables: a
contract can be based on their specification

If Agent refuses, he obtains a reservation utility UR and Prin-
cipal a reservation utility normalized to 0

If Agent accepts, then he decides a, outcome x arises and
contractual transfers are implemented
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I.3. Perfect information benchmark

Benchmark case: (a, x) are observable and verifiable, i.e. they
can be the basis of a contract w = w(x, a).

Ex ante Pareto program:

(w0(.), a0) ∈ arg maxw(.),a E[x− w(x)]

E[u(w(x))− C(a)] ≥ UR
Two steps: First, perfect information optimum for given a:

max
w(.)

∫
(x− w(x))fa(x)dx

UR ≤
∫
u(w(x))fa(x)dx− C(a).

Participation constraint = individual rationality constraint
will obviously be binding:∫

u(wa(x))fa(x)dx− C(a) = UR
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I.3. Perfect information benchmark

Optimal risk-sharing in Pareto optimum: equalized MRS
across states (called Borch rule): u′(wa(x)) must be constant
across all x

That is: wa(x) = u−1(UR + C(a)), i.e. perfect insurance

In general (risk averse Principal), optimal risk sharing: 0 ≤
w′a(x) ≤ 1

Second step is easy: maximize w.r.t. a

a0 = arg max
a

∫ (
x− u−1(UR + C(a))

)
fa(x)dx

Optimum: Principal proposes a forcing contract: you take
action a0 and you’ll be paid w0(x) = u−1(UR + C(a0)) irre-
spective of the outcome x: Full efficiency.
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I.4. First hint on imperfect information

Suppose now a not observable by Principal (or anybody else)

Perfect information optimum is action a0 and a constant
transfer w0 = u−1(UR + C(a0)) (risk-netrual Principal)

Faced with perfect information contract, Agent chooses his
action

max
a

(
u(w0)− C(a)

)
= UR + C(a0)−min

a
C(a) > UR

a ≡ minA: he chooses the minimal-cost effort, since he is
perfectly insured !

Tension between optimal risk sharing (full insurance) and incen-
tives to expend effort
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I.4. First hint on imperfect information

Suppose the Agent is risk-neutral: u(w) = w

Full information optimum yields profit for P:

Π = E[x | a0]− C(a0)− UR = max
a

(E[x | a]− C(a))− UR

Sell-out contract: w(x) = x−Π→Agent residual claimant
of profits for purchase price of Π and chooses

max
a

(∫
w(x)fa(x)dx− C(a)

)
= max

a
(E[x | a]− C(a)−Π)

= UR

for a = a0 ! He takes efficient action, full efficiency !

BUT with risk-aversion, this violates optimal risk-sharing

Fundamental conflict: Pareto efficiency vs incentives
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I.4. First hint on imperfect information

How much risk is necessary ? What is the optimal contract?

max
w(.),a

∫
(x− w(x)) fa(x)dx

s.t. :

∫
u(w(x))fa(x)dx− C(a) ≥ UR

and : a ∈ arg max
a′

(∫
u(w(x))fa′(x)dx− C(a′)

)
Agent accepts the contract: participation / IR constraint

New constraint = incentive constraint: the action induced is
the one preferred by the Agent to any other action a′ wihtin
the framework of the contract

Simplify this (too general) setting to get intuition
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II. Analysis in the basic model – II.1. Setting

Solving this problem may be tricky in general → Start with the
binary version with 2 actions: much of the intuition.

Effort can take 2 values: A = {0, 1}, C(1) = C > 0 = C(0)

Principal is risk neutral

Principal’s program under moral hazard solved in 2 stages

For a given a, what is the best contract that induces the
Agent to take action a ? That is, what is the cost-minimizing
contract that implements a
Compare the cost-minimizing contract that implements a = 1
and the cost-minimizing contract that implements a = 0

NB: cost-minimizing contract that implements a = 0 is the
perfect insurance contract w0 = u−1(UR)
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II.2. Cost-minimizing contract that implements a = 1

min
w(.)

∫
w(x)f1(x)dx

s.t. :

∫
u(w(x))f1(x)dx− C ≥ UR

and :

∫
u(w(x))f1(x)dx− C ≥

∫
u(w(x))f0(x)dx

λ ≥ 0 multiplier associated to IR constraint

µ ≥ 0 multiplier associated to IC constraint

If µ = 0, solving without IC leads to w1 = u−1(UR + C),
which induces Agent to choose a = 0 ! So, µ > 0

IR binding; otherwise, consider dw(x) such that, for all x

u(w(x))− u(w(x) + dw(x)) = ε > 0
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II.2. Cost-minimizing contract that implements a = 1

Optimizing the Lagrangean, FOC:

1

u′(w∗1(x))
= λ+ µ

(
1− f0(x)

f1(x)

)
= λ+ µ (1− r(x))∫

u(w∗1(x))f1(x)dx− C = UR∫
u(w∗1(x))f1(x)dx− C =

∫
u(w∗1(x))f0(x)dx

where r(x) is the likelihood ratio f0(x)
f1(x)

r(x) measures how likely it is that x comes from a draw from
(x | a = 0) compared to a draw from (x | a = 1)

Compensation w∗1(x) is higher (lower) when the likelihood
ratio is lower (higher), i.e. when it is relatively likely (un-
likely) that Agent has chosen a = 1 (a = 0)
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II.2. Cost-minimizing contract that implements a = 1

Does compensation increase in performance x (w∗1(.) increasing)?

1

u′(w∗1(x))
= λ+ µ (1− r(x))

YES iff r(x) is decreasing in x, i.e. if higher performance
gives more confidence that a = 1 has been chosen ! (MLRP,
Monotone likelihood ratio property)

NO in general !

See the counter-example on the picture below
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II.2. Cost-minimizing contract that implements a = 1
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II.2. Cost-minimizing contract that implements a = 1

The nature of the problem is stochastic: stochastic link from a
to x matters, not physical link

In fact, there is nothing special about x except that it is an
observable signal about the action; could be different from Prin-
cipal’s gross profit.

Note also that MLRP implies FOSD, i.e. F1(w) ≤ F0(x) for all
x, but the reverse is not true.

Necessary that effort stochastically increases output for the
optimal compensation to increase in performance

But not sufficient !
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II.2. Cost-minimizing contract that implements a = 1

If several signals about Agent’s action, which one to use ?

Two verifiable signals: (x, y) ∼ fa(x, y)

FOC are similar:

1

u′(w∗1(x, y))
= λ+ µ

(
1− f0(x, y)

f1(x, y)

)
.

w∗1(x, y) iff r(.) depends on x and on y

A contrario, suppose fa(x, y) = k(x, y)ga(x), then r(.) de-
pends only on x and w∗1(.) should not depend on y optimally.

fa(x, y) = k(x, y)ga(x) ⇔ x is a sufficient statistics on a
for the pair (x, y), i.e. y does not convey any additional
information on a that is not already contained in x

This is the sufficient statistics theorem (Holmström)
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II.3. Optimal contract

Cost-minimizing contract that implements a = 1 is more
costly due to imperfect information on a:∫

w∗1(x)f1(x)dx > u−1(UR + C)

Principal’s net profit of inducing a = 1 is smaller than per-
fect information profits:∫

(x− w∗1(x)) f1(x)dx <

∫
xf1(x)dx− u−1(UR + C)

Even if a = 1 is optimal under perfect information, a = 0
may become optimal under imperfect information on a

Cost of moral hazard

Moral hazard implies a strict loss for the Principal: either induce
a = 1 at a larger cost, or induce a = 0.
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III. General discrete approach – III.1. Setting

How general / robust are previous conclusions ? Established
model of Grossman - Hart with finite signals and finite actions.

Verifiable signal takes a finite number of values: x ∈ X =
{x1, x2, ...., xn}, ranked increasingly in i.

Effort: a ∈ A finite, and fi(a) = Pr{x = xi | a}
Cost-minimizing contract that implements a: {wi}ni=1, viewed
using utilities {vi}ni=1 with vi = u(wi):

min
(vi)i

∑
i
fi(a)u−1(vi)

s.t.:
∑

i
fi(a)vi − C(a) ≥ UR

and:
∑

i
fi(a)vi − C(a) ≥

∑
i
fi(a

′)vi − C(a′), ∀a′
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III.2. General results

All constraints are linear constraints, u−1(.) is convex; standard
polygonal program where the only problem is whether the set of
constraints is empty.

Definition of an implementable action

a is implementable if the set of constraints is not empty

Proposition: Binding participation constraint

If a implementable, participation constraint binds at cost-
minimizing contract that implements a

Proof: If not, consider a uniform decrease in vi, ∀i.
This result depends on Agent’s utility being additively sep-
arable in money / action

OK with multiplicatively separable: u(w)γ(a) (check it!)
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III.2. General results

Existence of cost-minimizing contract iff set of constraints is not
empty, i.e. a implementable

Proposition: Condition of implementability / existence

a implementable iff there does not exists a distribution ν(a′) over
a′ ∈ A \ {a}, such that: for any i∑

a′ 6=a
ν(a′)fi(a

′) = fi(a) and
∑
a′ 6=a

ν(a′)C(a′) < C(a)

Proof: existence of a solution to set of IC inequalities, related
to Farkas’ Lemma (Theorem 22.1, Rockafellar 1970)

Intuition: no way to achieve the same distribution over out-
comes at smaller (expected) cost.
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III.2. General results

Cases where moral hazard does not matter:

a can be implemented at the same cost as under perfect
information (with perfect insurance contract)

The case of shifting support:

Distribution fi(.)i has shifting support relative to a if there
exists i0 such that fi0(a) = 0 < fi0(a′) for all a′ such that
C(a′) < C(a)
If the distribution has shifting support relative to a, a can be
implemented at the same cost as under perfect information
Intuition: take vi0 → −∞ (assumption u(.) unbounded from
below) and vi = UR + C(a) otherwise

If Agent is risk neutral
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III.2. General results

General loss for the Principal due to moral hazard

Assume a implementable, u(.) stricly concave, fi(.)i has full sup-
port and C(a) > mina′∈AC(a′), cost of implementing a under
moral hazard is strictly higher than under perfect information.

Proof:

Cannot be smaller: more constraints

Under the assumptions, there exists i, j such that vi 6= vj

So, Jensen inequality + concavity + full support yield:

∑
k

fk(a)u−1(vk) > u−1

(∑
k

fk(a)vk

)
≥ u−1 (UR + C(a))
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III.3. Further results about monotonicity

Monotonic properties of cost-minimizing contract

Assume previous assumptions:

there exists i such that wi < wi+1

there exists j such that xj − wj < xj+1 − wj+1

Very weak properties ! Going further with Kuhn-Tücker?

1

u′(u−1(vi))
=

λ+
∑
a′ 6=a

µ(a′)

−∑
a′ 6=a

µ(a′)
fi(a

′)

fi(a)

with µ(a′) > 0 means Agent is indifferent between a and a′
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III.3. Further results about monotonicity

At optimum, there exists (at least) one such less costly action
a′ for which µ(a′) > 0

If there exists just one such a′, as in the two-action model.

MLRP hypothesis: For all (a, a′) ∈ A2, if C(a′) ≤ C(a) then
fi(a

′)
fi(a)

is decreasing in i

Then, the cost-minimizing contract is increasing in i under
MLRP

But if there exists a′ and a” with C(a′) < C(a) < C(a”),
µ(a′) > 0 and µ(a”) > 0, MLRP does NOT imply that:

µ(a′)
fi(a

′)

fi(a)
+ µ(a”)

fi(a”)

fi(a)
decreases in i
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III.3. Further results about monotonicity

Spanning condition: There exists two distributions f
i

and f̄i

over X, with f̄i
f
i

decreasing in i and non-decreasing mapping

λ(.) from A to [0, 1] such that:

∀a, fi(a) = λ(a)f̄i + (1− λ(a))f
i

Spanning condition is sufficient for monotonicity, but strong

CDFC assumption: For all (a, a′, a”) such that C(a) = λC(a′)+
(1− λ)C(a”), the following holds:

F (· | a) �FOSD λF (· | a′) + (1− λ)F (· | a”)

MLRP + CDFC are sufficient conditions for monotonicity,
but again quite strong

Conclusion: monotonicity is not a natural property in the
moral hazard framework
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III.4. Information structures

In two-effort setting: a glimpse on when one should make the
compensation contingent on an additional signal and when not.

General link between information structures (signal technologies)
and Principal’s cost of implementing a given action a under moral
hazard ?

A moral hazard environment is characterized by the information
structure, summarized by f(.) from A into a simplex

Question: compare the expected compensation to implement
action a (i.e. moral hazard cost of implementing a) under infor-
mation structure f(.) (vector of dim n) and information structure
g(.) (of dim m) ?
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III.4. Information structures

Let Γ(a; f) denote the value of the cost-minimizing program that
implements action a when the structure of verifiable signals is
given by f(.)

Compare Γ(.; f) and Γ(.; g) for two signal technology f(.) and
g(.).

Recall a basic definition:

Blackwell sufficient information structures

f(.) (of dim n) is sufficient for g(.) (of dim m) in the sense of
Blackwell if there exists a transition matrix P (of dim m × n)
such that: g(.) = P.f(.) (i.e. gj(.) =

∑
i pjifi(.))
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III.4. Information structures

Comparison of information structures

If f(.) (of dim n) is sufficient for g(.) (of dim m) in the sense of
Blackwell, then Γ(.; f) ≤ Γ(.; g).

Proof:

vj : cost-min contract under g(.) and let define a contract ui
based on signal f(.) as: ui =

∑
j pjivj (or u = P t.v)

Sufficiency implies for any action α, g(α)t.v = f(α)t.P t.v =
f(α)t.u, so that u satisfies also (IC) and (IR)

New contract is cheaper than original one (Jensen again):

∑
i

fi(a)u−1(ui) =
∑
i

fi(a)u−1

∑
j

pjivj


≤

∑
ij

fi(a)pjiu
−1(vj) =

∑
j

gj(a)u−1(vj)
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III.4. Information structures

Getting back: suppose there are 2 signals, x ∈ {x1, x2, ..., xi, ...xn},
characterized by (marginal) fi(.), and y ∈ {y1, y2, ..., yj , ...ym},
characterized by (joint) hij(.) for i = 1, 2, .., n and j = 1, 2, ...,m.

In general, Principal will incur a smaller moral hazard cost of
implementing any action (except lowest cost one) if he makes the
compensation contingent on both x and y.

Proof:

Let gk(.) = hij(.) for k = (i− 1)m+ j, k = 1, ..., nm.

With P such that pik = 1 if and only if k ∈ {(i−1)m+1, (i−
1)m+ 2, ..., im} and 0 otherwise, g(.) sufficient for f(.):

fi(a) =
∑
j

hij(a) =

im∑
k=(i−1)m+1

gk(a) =
∑
k

pikgk(a)
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III.4. Information structures

However, suppose there exists a transition matrix K such that
hij(.) = kijfi(.):

Let define the matrix D of dimension nm × n such that
dki = pji if k = (i − 1)m + j and 0 otherwise. D is a
transition matrix since K is one.

We have: g(.) = D.f(.) so that x is sufficient for (x, y)

It follows that: Γ(.; f) = Γ(.; g) that is, the cost-minimizing con-
tract that implements a given action a needs not depend on y
(Holmström)
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III.4. Information structures

Application:

A salesman’s effort aims at convincing buyers to buy the
firm’s product. When he visits a buyer, the buyer may end
up signing up for a pre-order

Then macroeconomic shocks impact buyers’ budget and a
buyer cancel his order before actual delivery (and payment)

(nb orders, nb sales) jointly distributed depending on effort,
but the distribution of sales conditional on orders only de-
pend on macroeconomic shocks

Observed performance: number of units ordered and number
of units actually sold

Salesman’s compensation should only depend on the ob-
served number of orders, not on the observed sales as macro
shocks are not informative about the salesman’s effort
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III.5. Pitfall of the ”first-order approach”

Natural way to formalize moral hazard: the continuous model
with A = [0, ā] and X real interval (X could be discrete as
before, this is not the important point)

Use calculus to replace IC constraint by its local FOC:∫
u(w(x))∂afa(x)dx− C ′(a) = 0

FOC uses the differential version of likelihood ratio:

1

u′(w(x))
= λ+ µ

∂afa(x)

fa(x)

Under differential version of MLRP, i.e. ∂afa(x)
fa(x) increasing

in x, FOC implies w(.) increasing provided µ > 0!

BUT ! a might be only a local extremum
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III.5. Pitfall of the ”first-order approach”

Weak local IC:
∫
u(w(x))∂afa(x)dx− C ′(a) ≥ 0

Then µ ≥ 0 and, as before, FOC imply w(.) increasing under
differential version of MLRP

Differential CDFC: Fa(x) is convex in a for all x.

∂2
aa

(∫
u(w(x))fa(x)dx− C(a)

)
= ∂2

aa

(
−
∫
u′(w(x))w′(x)Fa(x)dx− C(a)

)
= −

∫
u′(w(x))w′(x)∂2

aaFa(x)dx− C”(a) ≤ 0

Agent’s objectives are concave, first-order approach OK; but
restrictive assumptions (MLRP + CDFC) as in discrete case

Presentation: Francis Bloch, Slides: Bernard Caillaud Principal - Agent model under moral hazard



III.6. Asymptotic perfect information optimum

We’ve considered X an interval or even R; when the density
vanishes, situation looks like a shifting support

Suppose x = a+ε, with ε distributed according to F (.) cont.
diff. unimodal with zero mean.

Take a = [0, 1], C(a) = a2/2, u(0) = 0 = UR

Suppose full information optimum is: a = 1, v0 = 1/2

Consider the following threshold contract: for a given b,
v(x) = v− if x < b and v(x) = v+ if x ≥ b
Agent’s objectives:

max
0≤a≤1

(
F (b− a)v− + (1− F (b− a))v+ −

a2

2

)
If (v+ − v−)f(b − 1) = 1 and f ′(b − 1) > 0, Agent chooses
a = 1
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III.6. Asymptotic perfect information optimum

To make IR binding:

F (b− 1)v− + (1− F (b− a))v+ −
1

2
= 0

Solving: v+ = 1
2 + F (b−1)

f(b−1) and v− = 1
2 −

1−F (b−1)
f(b−1)

Suppose limy→−∞
F (y)
f(y) = 0; e.g. normal distribution

Then, when b → −∞, v+ → 1/2, v− → −∞ but (1 −
F (b−1))u−1(v−)→ 0 (infinite punishment but with vanish-
ing probability)

The cost of implementing a = 1 using this contract:

F (b− 1)u−1(v−) + (1− F (b− 1))u−1(v+)→ u−1(1/2)

Non-existence; but approximate full information optimum
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IV. Dynamic issues – IV.1. Why study dynamics and
how?

Moral hazard models are widely used to model organizations,
firms,... and these are long-lasting institutions: nexus of con-
tracts for repeated interactions.

Similarly, contractual arrangements in markets (distribution and
retailing, insurance, credit...) span over long time periods during
which several transactions take place.

Sources of dynamics:

Agent takes actions today, tomorrow,...

Information changes over time

The contractual setting is modified: related to commitment
issues
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IV.1. Why study dynamics and how?

Commitment = capacity to tie one’s own hands

Long term contract proposed once and for all;

Principal does not play after contract signature: no non-
contractible action

Principal commits not to use information if it was not ex-
plicitly stated in original contract

Abide by (possibly) ex-post (.i.e once some information has
been learnt) inefficient rules

This is a strong assumption. Alternative settings:

Absence of commitment: Principal and Agent repeatedly
negotiate spot contracts.

Commitment with renegotiation: parties can agree to
modify a long-term contract if it is mutually beneficial.
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IV.1. Why study dynamics and how?

Classical argument: Commitment is always (weakly) benefi-
cial in a simple Principal - Agent relationship.

Proof: Principal committing to her equilibrium strategy in a non-
commitment setting makes her as well off as without commiting,
and Agent’s best response unchanged.

How necessary is the possibility of commitment ? Possible prop-
erties of optimal long term contract:

Sequential efficiency, renegotiation-proof: At any date,
no other mechanism and attached equilibrium that is mutu-
ally beneficial for Principal (strictly) and Agent

Sequential optimality, replication by spot contracts:
Sequential efficient and, at any date, Agent gets his reserva-
tion utility
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IV.1. Why study dynamics and how?

Complete study of dynamics of moral hazard models beyond
scope of this introductory course !

Focus on a few properties of the optimal long term contract in one
Principal - one Agent framework with two periods to account
for several transactions, actions, steps of information accrual, and
one possible contractual change

Themes:

Role of memory

Agent’s access to financial markets

Observable but not verifiable actions
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IV.2. The role of memory in repeated moral hazard

t = 1 t = 2

a0 ∈ A (xi, wi)

Prob: fi(a0)

ai ∈ A
(if xi)

(xj , wij)

Prob: fj(ai)

Standard model with X discrete and A continuum

Agent’s discount factor δ; risk-neutral Principal’s discount
factor is market discount factor ρ = 1

1+r

Technological separability: at t, output only determined
by current effort

a0 action implemented at 1st period, if observed outcome
at 1st period is xi, let ai denote the action implemented in
2nd period (in general, incentives may induce a different 2nd
period action depending on verifiable variables at 1st period)
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IV.2. The role of memory in repeated moral hazard

Contracts:

Compensation at t contingent on realized states of nature,
i.e. on past and current outputs

wi or vi = u(wi) if xi at t = 1 and wij or vij = u(wij) if xi
at t = 1 and xj at t = 2

Static benchmark (assume FO approach for simplicity):

Cost-minimizing condition for a:

1

u′(wi)
= λ+ µ

f ′i(a)

fi(a)

Binding IR: ∑
i

pi(a)vi − C(a) = U.
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IV.2. The role of memory in repeated moral hazard

Role of memory in optimal long term contract

The optimal LT contract exhibits memory provided moral hazard
is not degenerate, i.e. if a0 is not the least costly action; more
precisely, for i 6= i′, wi 6= wi′ implies ∃j, wij 6= wi′j .

Proof:

Suppose i 6= i′ such that: vi 6= vi′ .

If for all j, vij = vi′j = v̂j , then necessarily: ai = ai′ = â;
i.e. same action induced (mild caveat if equivalent actions).

After xi at t = 1, modify: reduce vi− ε and after xj at t = 2
for all j, increase v̂j + ε

δ :

incentives for 2nd period action after xi unchanged;
Agent’s intertemporal utility if xi unchanged;
obviously idem after any other observation
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IV.2. The role of memory in repeated moral hazard

Optimal intertemporal smoothing for Principal implies:

{ε = 0} = arg min{u−1(vi − ε) + ρ
∑
j

fj(â)u−1(v̂j +
ε

δ
)}

⇒ 1

u′(wi)
=
ρ

δ

∑
j

fj(â)
1

u′(ŵj)
=

1

u′(wi′)
⇒ wi = wi′

Contradiction: memory of first-period incentives

If no memory at all, it means that vi independent of i and
a0 is the lowest-cost action.

Therefore, the optimal compensation must depend upon present
and past performance for the optimum contract, even though
past effort has no impact on current (or future) performance.

Presentation: Francis Bloch, Slides: Bernard Caillaud Principal - Agent model under moral hazard



IV.2. The role of memory in repeated moral hazard

As a consequence, the optimal LT contract is not sequentially
optimal

The period 2 utility provided by the optimal contract depends
upon the realization of xi at t = 1, hence cannot be equal to the
exogenous reservation utility of the Agent.

However, the optimal LT contract is sequentially efficient (rene-
gotiation proof):

If not, after history xi, replace branch of the LT contract
by a better sub-contract, subject to the same continuation
utility: U i ≡

∑
j fj(ai)vij − C(ai).

Continuation utility constraint is binding: same expected
utility after xi.

Idem after other xi′

Hence, a better LT contract: contradiction.
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IV.3. Role of financial markets

In same framework, suppose the Agent has access to financial
markets and can save (or borrow if negative) Si on his compen-
sation wi after xi so as:

max{u(wi − Si) + δ
∑
j

fj(ai)u (wij + (1 + r)Si)}

Around Si = 0, A would like to save:

Derivates around Si = 0: −u′(wi)+δ(1+r)
∑

j fj(ai)u
′(wij)

Using same intertemporal transfer as in previous subsection:

1

u′(wi)
=
ρ

δ

∑
j

fj(ai)
1

u′(wij)

The function 1/x being convex, Jensen inequality implies:

δ(1+r)
∑
j

fj(ai)

(1/u′(wij))
≥ δ(1+r)

∑
j

fj(ai)

u′(wij)

−1

= u′(wi)
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IV.3. Role of financial markets

This is problematic: Agent can easily undo the incentives built
in the LT contract !!

One could think of limiting the borrowing possibilities of the
Agent, but it seems hard to limit his saving possibilities !

Nevertheless, if savings are observable and verifiable, i.e. control-
lable, they should also be included in the optimal moral hazard
contract:

min
(wi,wij ,Si)

∑
i,j

fi(a0)fij(ai)(wi + ρwij)

subject to IR and incentives constraints using∑
i,j

fi(a0)fij(ai) [u(wi − Si) + δu(wij + (1 + r)Si)− C(a0)− δC(ai)]
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IV.3. Role of financial markets

With ci = wi−Si, cij = wij + (1 + r)Si, i.e. substitute consump-
tion to earnings, same program as without financial markets:

Optimal LT contract with controlled access to financial markets

Consumption in optimal contract does not depend upon the (con-
trolled) access to financial market; it exhibits memory and opti-
mal LT contract with controlled savings is sequentially efficient.

Stronger result: sequential optimality

Optimal contract with controlled access is sequentially optimal

Key: at t = 2, IR depends upon accumulated savings Si
Using Si, adjust reservation utility (depends on savings) and
maintain unchanged continuation utility !

Access to financial markets disconnects the intertemporal smooth-
ing problem from the moral hazard problems (incentives vs in-
surance) at each t.
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IV.3. Role of financial markets

When savings cannot be fixed within the contract: savings be-
come one additional moral hazard variable!

Sequential efficiency

In general, the optimal LT contract with non-controlled access to
financial market is not sequentially efficient; hence not sequen-
tially optimal.

In the usual proof of renegotiation-proofness (see earlier), when
one replaces one branch after xi with a better sub-contract, this
leaves expected utility unchanged but expected marginal utilities
may change through wealth effects, which conflicts with intertem-
poral smoothing

Noticeable case: When u(w, a) = − exp{−r(w − c(a))}, util-
ity and marginal utility are aligned: optimal LT is sequentially
efficient.
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IV.4. Renegotiation after a signal

Not the same dynamics setting here, but issue is intrinsically
dynamic: what happens if the Agent’s action is observable to
the Principal, but not verifiable? Or if some observable but
non-verifiable signal is observed ?

One cannot write a contract based on this signal, but after ob-
serving it, the Principal and the Agent can figure out what kind
of contracts would now be better and renegotiate on such a con-
tract !

In the one-period model with risk-neutral Principal, assume that:

After action a is taken and before outcome x is observed,
both Principal and Agent observe signal s

and Principal and Agent can renegotiate on a new contract
if mutually beneficial
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IV.4. Renegotiation after a signal

Simple case: the signal s is the action a and Principal has
bargaining power at renegotiation stage.

Observing the action:

Any implementable action under standard moral hazard is imple-
mentable at full information cost u−1(C(a)) under renegotiation.

Proof:

After any a, gains from trade since risk is not optimally
shared and action is already decided: Principal offers new
fixed compensation:

u−1(
∑
i

fi(a)vi)

Agent is indifferent

(IR) implies this is equal to u−1(C(a)).
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IV.4. Renegotiation after a signal

Renegotiation reduces the cost of implementable action down to
its full information value. Therefore, the full information opti-
mal action (if implementable) can be implemented under moral
hazard with observability of action and renegotiation !

Renegotiaton is strictly valuable for Principal (if no shifting sup-
port)

Compensation is not determined by the initial contract but by
the renegotiated contract. Initial contract serves as a threat point
if the Agent were to deviate.
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IV.4. Renegotiation after a signal

Other simple case: the signal s is the action a and Agent has
bargaining power at renegotiation stage.

The full information outcome is attainable here, too:

Consider the contract wi = xi−Π0, sell out contract at price
equal to the Principal’s full information profit.

At renegotiation avec a, Agent proposes full insurance at
wage w such that: ∑

i

fi(a)xi − w = Π0

So, Agent expects:
∑

i fi(a)u(wi) − C(a) =
∑

i fi(a)xi −
C(a)− Π0 which is maximized by definition for a = a0 and
yields expected utility equal to the reservation value.
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IV.4. Renegotiation after a signal

Original contract determines the default payoff in the renegotia-
tion, hence here the Principal’s profit.

Since renegotiation will bring back full insurance for the Agent,
he can behave as if risk-neutral; hence the sell out contract.

This type of result extends to more balanced (but monotonic)
renegotiation bargaining processes between Principal and Agent,
provided the Principal keeps the bargaining power at the initial
stage.
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IV.4. Renegotiation after a signal

More elaborate case: s is an imperfect signal and Principal
has all bargaining power.

Signal s ∈ {s1, ..., sj , ..., sm} with marginal probability gj(a).

Conditional probability of xi given a and sj : σij(a)

f(.) = Σ(.).g(.)

Principal knows s while Agent knows a and s: renegotiation po-
tentially under incomplete information.

Except if Σ(a) = Σ(a′) for any two actions: i.e. if s is a sufficient
statistics about x for (s, a). Then, renegotiation under symmetric
information.
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IV.4. Renegotiation after a signal

Under sufficient statistics assumption, renegotiation of a contract
v leads to a full insurance contract at wage u−1(

∑
i σijui) after

signal sj , and therefore to an expected utility for Agent:∑
j

gj(a)
∑
i

σijui − C(a) =
∑
i

fi(a)ui − C(a)

So, the same IC and IR constraints hold with or without renego-
tiation ! The set of implementable actions is the same

And if there is no shifting support for the signal, i.e. Σ >> 0,
then the cost of implementing any action (but the least-cost one)
is strictly smaller with renegotiation than without.

Without sufficient statistics condition: see Hermalin-Katz
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V. Applications

Remark about general moral hazard models:

General results about inefficiency and informativeness can
be obtained in the general framework

But it is difficult to obtain explicitly optimal contract and,
consequently, almost impossible to use general moral hazard
models in more complicated environments.

Applying moral hazard to understand organizations or manage-
rial compensation schemes implies to make additional assump-
tions so as to work with tractable models, with explicit solutions.

In this section:

Model with continuum of actions and outcomes and linear
schemes

Model with risk neutrality ... but limited liability.
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V.1. Linear schemes with CARA utility

Holmström - Milgrom setting:

Agent takes multiple actions: a = (a1, ..., an) ∈ Rn
+ at cost

C(a) convex

Principal’s benefit can be general (concave) B(a)

Agent’s actions generate a vector of signals: x = µ(a) + ε,
where ε is normally distributed with zero mean and var/cov
matrix Σ

Principal is risk neutral

Agent’s preferences: U(ω) = − exp{−rω} with ω is the
Agent’s wealth: ω = w(x)− C(a)
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V.1. Linear schemes with CARA utility

Central assumption: we restrict attention to linear schemes,
i.e. w(x) = αt.x+ β.

With linear contracts and normally distributed noise term, one
has:

E[U(w(µ(a) + ε)− C(a)] = U
(
αt.µ(a) + β − C(a)− r

2
αt.Σ.α

)
That is, one can reason in terms of certainty equivalent, equal to
the expected net wealth minus a risk premium.

The joint surplus to be maximized is: B(a) − C(a) − r
2α

t.Σ.α
which is independent of β. β simply determines the distribution
of the joint surplus between both players.
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V.1. Linear schemes with CARA utility

Optimal contract program:

maxa,α {B(a)− C(a)− r

2
αt.Σ.α}

s.t. a ∈ arg max
e
{αtµ(e)− C(e)}

Assume that µ(a) = a so that we can follow a FO approach: the
incentive constraint writes: α = ∂C(a) (for interior a >> 0)

FOC for the optimal contract are thus:

∂B(a)− [In + r∂2C(a).Σ].∂C(a) = 0

α = ∂C(a)

Presentation: Francis Bloch, Slides: Bernard Caillaud Principal - Agent model under moral hazard



V.1. Linear schemes with CARA utility

First consider the case of a one-dimensional action: n = 1

maxα

(
B(a)− C(a)− rσ2α2

2

)
s.t. ⇔ C ′(a) = α

yields the optimal contract: α = B′(a)
1+rσ2C”(a)

and C ′(a) = α

more risk-averse (r larger), less performance-based

higher risk tilts trade-off towards more insurance

more responsive to incentives (i.e. smaller C ′′ since da
dα =

1
C′′(a)), more performance-based
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V.1. Linear schemes with CARA utility

The case of two actions: n = 2

Assume errors are stochastically independent (Σ is diagonal)

If activities are technologically independent (∂2C and ∂2B
are diagonal, then:

αi =
∂iB(a)

1 + rσ2
i ∂

2
iiC(a)

Commissions are set independently of each others. This is the
benchmark case.
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V.1. Linear schemes with CARA utility

Assume now that the 2 tasks are not technologically independent.

Moral hazard cost of implementing action (a1, a2) >> (0, 0) :

Γ(a1, a2) = C(a1, a2) +
r

2
(∂C(a1, a2))t.Σ.∂C(a1, a2)

so moral hazard marginal cost of ai is equal to full information
marginal cost, i.e. (1 + rσ2

i ∂
2
iiC).∂iC, plus rσ2

j∂
2
ijC.∂jC.

If complement tasks wrt costs, the marginal cost is smaller
than with independent tasks: tends to lead to higher optimal
tasks (working on one reduces the cost of working on the
other) and higher commissions

If substitutes wrt costs, tends to lead to lower commissions
and lower optimal tasks: if αi increases, Agent substitutes
effort away from task j !
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V.1. Linear schemes with CARA utility

Only one observed activity: x = a1 + ε (that is, σ2
2 =∞)

α1 =
∂1B − ∂2B

∂12C
∂22C

1 + rσ2
1(∂11C − (∂12C)2

∂22C
)

If ∂12C > 0, more cost-substitutability yields smaller com-
mission

To provide incentives to a2, either reward it (but not mea-
sured here!) or reduce its opportunity cost, i.e. reduce the
reward on the rival activity

if ∂1B − ∂2B
∂12C
∂22C

< 0, even possible that: α1 < 0

If output x can be destroyed at no cost, α1 = 0 even if task
1 is perfectly measured (i.e. if σ2

1 = 0).
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V.1. Linear schemes with CARA utility

Assume:

Perfectly substitutable efforts: C(a1 + a2)

x = a1 + ε (or σ2
2 =∞)

C(.) has strict minimum at a = ā > 0 and C(ā) = 0: fixed
wage contract elicits some effort (enjoyment of work)

If B(a1, 0) = 0 for all a1 and B(.) is increasing for (a1, a2) >>
(0, 0), then the optimal contract is characterized by α1 = 0, i.e.
fixed wage contract; piece rates rare because of multi-task

Proof:

α1 = 0 leads to maxa2 B(ā− a2, a2)− C(ā) > 0

α1 > 0 leads to a2 = 0, hence a negative surplus

α1 < 0 leads to a2 < ā and a1 = 0 with surplus smaller than
B(ā)− C(ā), hence dominated.
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V.1. Linear schemes with CARA utility

Applications: When Agent can allocate effort to production,
production output imperfectly observable, and to asset main-
tainance, asset value difficult to measure.

”Employment contract”: assets belong to the firm. The
aggregate surplus maximizing employment contract provides
low-power incentives, to avoid reduction in asset value

”Contract with an independent”: assets belong to the Agent.
The aggregate surplus maximizing independent contract pro-
vides high-power incentives

Employment contract tends to be optimal for high values of
risk-aversion and risks, independent contract for low values:
a theory of the firm à la Williamson
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V.1. Linear schemes with CARA utility

Applications for job design:

Allowing or banning external activities that are substitutes to
internal activities, that create profit for the Principal: depends
upon the availability of signals that can help design high-power
incentives for internal activities !

Allocating tasks to different agents or grouping them as a job for
one Agent: again, depends upon the observability.

Theory of organizations and hierarchies following Holmström -
Milgrom.
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V.2. Limited liability models

Moral hazard models much used in corporate finance: for
managerial compensation, shareholders / manager or en-
trepreneur relationships

Fact: agents are protected by limited liability, i.e. they are
responsible only for the money they put in a venture, not on
their personal wealth

Formally: w(x) ≥ w, often take w = 0

Technical consequence: it is not possible to punish Agent as
much as wanted to provide incentives

Partially invalidates our approach

(Almost) Equivalent to introducing infinite risk aversion of
the Agent at level of transfer w

So, in fact, address the problem without global risk aversion
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V.2. Limited liability models

Entrepreneur with initial wealth W has a project that re-
quires investment I > W

Project may succeed (profit R > 0) or fail (zero profit).

Effort-dependent probability of success a ∈ {0, 1}: p0 < p1.

Modelling option:

Effort a = 0 costless, effort a = 1 costs C
Effort a = 0 means doing something else with non-verifiable
private benefits B, a = 1 no outside private benefits (choose
this interpretation)

Entrepreneur borrows I−W from investors; all parties risk-
neutral

Assume project is profitable only if a = 1:

p1R− I > 0 > p0R+B − I.
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V.2. Limited liability models

Limited liability assumption

Reimbursements cannot exceed firm’s liquidities

Financial contract: 0 if (verifiable) failure, R− r payback to
investors and r as residual compensation for entrepreneur if
success : 0 ≤ r ≤ R
Under moral hazard, implementing a = 1 imposes:

p1r ≥ p0r +B ⇐⇒ r ≥ B
p1−p0

Limited liability forbids penalizing entrepeneur under fail-
ure, hence incentive rent:

p1r ≥
p1B

p1 − p0
> 0 = UR.

Moral hazard is costly despite risk-neutrality
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V.2. Limited liability models

Look for financial contracts that allow investors to break
even (investors’ participation constraint):

I −W ≤ p1

(
R− B

p1 − p0

)
⇐⇒

W ≥ W̄ ≡ p1B

p1 − p0
− (p1R− I)

W ≥ incentive rent - project profitability

If incentive rent is larger than project profitability, there
exist a financial contract that implements a = 1 and allows
investors to break even only if enough self-financing

Optimal contract depends on relative bargaining power of
both actors

Moral hazard implies credit market imperfection despite global
risk neutrality
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V.2. Limited liability models

Applications of this simple model to many issues in coporate
finance: see textbook in corporate finance by Tirole.

Models with limited liability provides a trade-off between rent
extraction and incentives, instead of insurance and incentives,
but their predictions are very close to more standard models of
moral hazard.

And they are much more tractable !
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