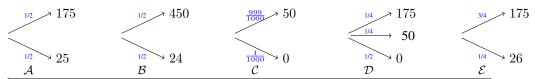
#### Automne 2012

### Université François Rabelais - M1 AGE


Cours d'économie du Risque et des Incitations - responsable : A. CHASSAGNON

## TD n° 2 - Eléments de correction

## L'évaluation subjective du risque - l'aversion pour le risque

# **Sept exercices**

1)Soit les cinq loteries  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $\mathcal{C}$ ,  $\mathcal{D}$  et  $\mathcal{E}$  suivantes. Dire s'il y a ou non un critère objectif (et quel est ce critère) qui permettrait de comparer objectivement *au moins deux loteries* parmi OUI  $\boxtimes$  NON  $\square$  ces cinq loteries. Faire une analyse complète



La question est ici de savoir si, prises deux par deux, les loteries sont comparables ou non au sens du critère de la dominance stochastique du premier ordre.

Les loteries  $\mathcal{A}$  et  $\mathcal{B}$  ne sont pas comparables. En effet, toutes les deux peuvent être interprétées comme la distribution de deux états de la nature sous-jacents, un bon un mauvais. La loterie  $\mathcal{B}$  est meilleure dans le bon état, mais moins bonne dans le mauvais état.

La loterie  $\mathcal{A}$  domine la loterie  $\mathcal{C}$  et la loterie  $\mathcal{D}$ 

La loterie A est dominée par la loterie E.

La loterie  ${\mathcal B}$  domine la loterie  ${\mathcal C}$  et la loterie  ${\mathcal D}$ 

La loterie  $\mathcal{B}$  et la loterie  $\mathcal{E}$  ne sont pas comparables.

La loterie C et la loterie D ne sont pas comparables.

La loterie  $\mathcal C$  et la loterie  $\mathcal E$  ne sont pas comparables.

La loterie  $\mathcal{D}$  et la loterie  $\mathcal{E}$  ne sont pas comparables.

2) En reprenant les cinq loteries définies à la question 1), dire si un agent dont les préférences suivent le critère de l'espérance d'utilité avec la fonction VNM  $u(x) = \sqrt{x}$  les classe de la manière suivante :  $\mathcal{B} \succeq \mathcal{E} \succeq \mathcal{A} \succeq \mathcal{C} \succeq \mathcal{D}$ . [On pourra pour faire les calculs s'aider d'un classeur Excel.]

OUI ☒ NON□

Il est ici nécessaire de calculer l'espérance d'utilité pour chacune de ses loteries, comme suit, et on obtient le classement :  $\mathcal{B} \succeq \mathcal{E} \succeq \mathcal{A} \succeq \mathcal{C} \succeq \mathcal{D}$ 

$$U(A) = \frac{1}{2}(\sqrt{175} + \sqrt{25}) = 9,11$$

$$U(B) = \frac{1}{2}(\sqrt{450} + \sqrt{24}) = 13,06.$$

$$U(C) = \frac{1}{1000}(999\sqrt{50} + \sqrt{0}) = 7,06.$$

$$U(D) = \frac{1}{4}(\sqrt{175} + \sqrt{50}) + 0 = 5,07.$$

$$U(E) = \frac{1}{4}(3\sqrt{175} + \sqrt{26}) = 11, 20.$$

3) En reprenant les loteries définies à la question 1), dire si un agent dont les préférences suivent le critère de l'espérance d'utilité avec la fonction VNM  $u(x) = \ln x$  les classe de la manière suivante :  $\mathcal{B} \succeq \mathcal{E} \succeq \mathcal{A}$ .

OUI □ NON⊠

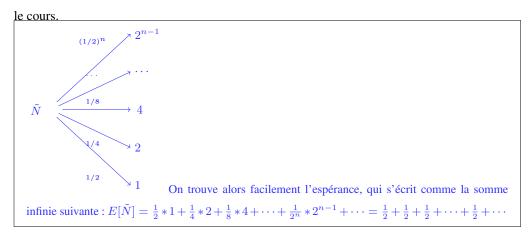
La question est similaire à la question précédente, avec une différence ici, c'est que les loteries  $\mathcal C$  et  $\mathcal D$  ne peuvent pas être comparées avec les autres, puisque le logarithme de zéro n'existe pas (est  $-\infty$ , ce qui désigne une désutilité maximale). Si on calcule les utilités pour les trois loteries  $\mathcal A$ ,  $\mathcal B$  et  $\mathcal E$ , leurs utilités sont :

$$U(A) = \frac{1}{2}(\ln 175 + \ln 25) = 4,19$$

$$U(B) = \frac{1}{2}(\ln 450 + \ln 24) = 4,64.$$

$$U(E) = \frac{1}{4}(3\ln 175 + \ln 26) = 4,69.$$

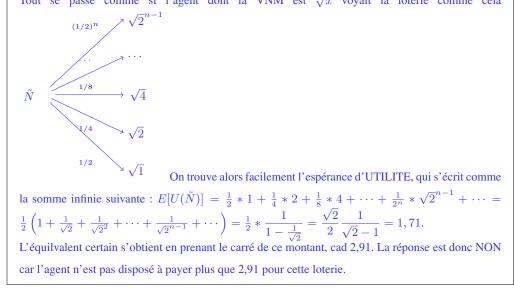
ce qui permet de les classer ainsi :  $\mathcal{E} \succeq \mathcal{B} \succeq \mathcal{A}$ .


4) En continuation de la Q2), évaluer pour l'agent dont la VNM est  $u(x) = \sqrt{x}$ , l'espérance, l'équivalent certain et la prime de risque de chacune des loteries de la question Q1).

| Loterie       | Espérance | Utilité | Equivalent certain | Prime de risque |
|---------------|-----------|---------|--------------------|-----------------|
| $\mathcal{A}$ | 100       | 9,11    | 83,07              | 16,93           |
| $\mathcal{B}$ | 237       | 13,06   | 170,46             | 66,54           |
| $\mathcal{C}$ | 49,95     | 7,06    | 49,90              | 0,05            |
| $\mathcal{D}$ | 56,25     | 5,07    | 25,75              | 30,49           |
| $\mathcal{E}$ | 137,75    | 11,20   | 125,38             | 12,39           |

5) Deux agents Mik et Mac ont des préférences suivant le critère de l'espérance d'utilité, Mik avec la VNM u(x) = x et Mac avec la VNM  $u(x) = \sqrt{x}$ . Expliquer en quelques lignes pourquoi l'on peut dire que l'un a plus d'aversion pour le risque que l'autre.

Comme on l'a vu dans la question précédente, pour n'importe laquelle des loteries, Mac est disposé à céder une prime de risque positive pour se débarrasser de son risque, alors que par définition, Mik, qui est neutre au risque n'accepte pas de loterie de moyenne plus faible en contrepartie de sa loterie : Mac est donc plus averse au risque que Mik.


6) Le jeu de St Petersbourg : Bernoulli soumit le problèmes suivant : Pierre propose un jeu à Paul. Il lance une pièce autant de fois qu'il est nécessaire pour obtenir "face" une première fois. Pierre accepte de donner à Paul 1 ducat si "face" apparaît au premier coup, 2 ducats s'il n'apparaît qu'au deuxième lancé, 4 ducats si trois lancés sont nécessaires, 8 ducats si 4, et ainsi de suite. On note  $\tilde{N}$  la distribution discrète des ducats qui seront versés par Pierre à Paul. Après avoir tracé l'embryon de l'arbre qui représente la distribution  $\tilde{N}$  [gains et probabilités associées], montrer que l'espérance de cette loi est infinie. Trouver cependant un argument pour lequel Paul refuserait de payer 10 ducats pour participer à ce jeu, à la lumière de ce que vous avez appris du comportement des agents économiques dans



7) En reprenant le jeu de St Pertersbourg légèrement modifié dans lequel les paiement sont  $1 \in , 2 \in , 2^2 \in , ..., 2^n \in ,$  si le premier "face" apparaît au 1er, 2e, 3e,... (n+1)e tour, est-il vrai qu'un agent dont les préférences suivent le critère de l'espérance d'utilité avec la fonction VNM  $u(x) = \sqrt{x}$  serait disposé à payer environ 3,  $41 \in$  pour participer à ce jeu ?

Tout se passe comme si l'agent dont la VNM est  $\sqrt{x}$  voyait la loterie comme cela

OUI □ NON⊠

