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Abstract The reimbursement abilities of firms holding liabilities on each other are

intertwined, potentially generating coordination failures and defaults through uncon-

trolled contagion. In stress episodes, these linkages thus call for an orderly resolution,

as implemented by a regulatory authority assigning the amount each firm within the

system reimburses to each other one. The paper studies such resolution by consid-

ering ’rules’, assuming their primary goal is to avoid default on external debts, say,

banks’ defaults on deposits. The main objective is to investigate what proportionality

means for a rule, taking into account various legal and informational constraints.
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1 Introduction

Firms, especially in the financial sector, hold liabilities on each other. As a result,

their reimbursement abilities are intertwined, thereby potentially generating coordi-

nation failures and defaults through uncontrolled contagion. In stress episodes, these

linkages thus call for an orderly resolution, as implemented by a regulatory authority

assigning the amount each firm within the system reimburses to each other one. Or-

derly resolutions arise in practice in discretionary or systematic ways. Given the risk

posed by a bankruptcy of LTCM, the Federal Reserve Bank of New York organized a

bailout by major creditors. More systematically, a central counterparty (CCP) orga-

nizes the liquidation of the liabilities of a defaulting member and allocates the losses

among the other members. The benefit of fast and orderly liquidation of complex

and intertwined positions became salient in the Lehman Brothers’ bankruptcy2 and

1PSE-EHESS, address 48 bd Jourdan, 75014 Paris, France e-mail demange@pse.ens.fr. This work
is supported by the grant ANR-18-CE26-0015-01.

2Lehman Brothers’ positions cleared by CCPs were liquidated fast (Fleming and Sarkar 2014).
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partly motivated new regulations.3 The liquidation of cross-liabilities -instead of the

liabilities of a single firm- raises new design issues related to contagion, the netting

of positions, the proportionality and fairness of reimbursements made and received.

The objective of this paper is to investigate such issues in a stylized model of financial

linkages. The analysis relies on resolution rules and their properties. Rules contrast

with disorderly or discretionary liquidations of conflicting claims and describe the

perspective of a regulator (or an exchange operator) who clarifies how conflicting

claims will be solved in case a default arises.

We consider a system of entities, called hereafter firms, which have claims and

liabilities between themselves, all with equal priorities. Firms also have relationships

with entities external to the system, resulting in a net external value, which can

be positive or negative.4 The analysis takes place at a single liquidation date. We

assume that default by a firm on external entities, say default by a bank on customers’

deposits, triggers bankruptcy, while default on firms within the system does not. Call

distressed a firm whose net external value is less than its net internal liabilities.

Requiring a distressed firm to fully reimburse its net internal liabilities makes it

default on its external debt hence bankrupt, raising a first question: Is it possible to

allocate the limited resources of the distressed firms so as to avoid their bankruptcy

without causing that of their non-distressed creditors? Such allocation is described

by a solution, which defines (partial) reimbursements within the system so that no

firm is bankrupt, i.e. the net worth of each is non-negative. Solutions may not exist,

meaning that bankruptcy cannot be avoided without bail-out. When they do exist,

solutions may be numerous, raising a second question: How to select a solution?

On what principle should the reimbursements be based? Proportionality is such a

principle. If a single firm is indebted and its creditors are safe, proportionality simply

means that the firm reimburses the same amount per unit of claim to each creditor.

However, in a system composed of multiple firms that are simultaneously debtors and

creditors, and when furthermore reimbursements face various constraints stemming

from law or common practice, what proportionality means is unclear. Our aim is

3The Dodd-Frank Act (2010) for the USA and the European Market Infrastructure Regulation
(EMIR 2012) for the EU require the use of CCPs for a large class of derivatives.

4The model is similar to Eisenberg and Noe (2001) except that here firms may be indebted to
entities outside the system.
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precisely to investigate proportionality of resolution rules in these contexts.

A (resolution) rule is defined for a range of liquidation problems. It specifies a

solution for each problem that may realize before knowing which one will realize. The

information available at the resolution date determines which solutions are admissible

from a legal and regulatory perspective and from the firms’ point of view. We always

assume that the regulator knows the net external value of each firm as well as its total

internal liabilities and claims within the system, thus, in particular, knows which firms

are distressed. As for bilateral liabilities, two settings are investigated. In the first one,

the regulator does not know the bilateral values5 and selects a coarse solution. Such

a solution specifies the total amount paid and received by each firm on the basis of

external values and claims and liabilities’ totals. These amounts can be understood

as sent to and dispatched by the regulator. In the second setting, the regulator

knows all the bilateral values and selects a full solution. Such a solution specifies

the reimbursement of each firm to each other one on the basis of full information.

We define a variety of ’constrained-proportional’ (CP) solutions, depending on the

information setting and the imposed constraints. One type of constraints bounds

how much a firm receives or reimburses, either at the total or bilateral level. For

example, requiring that a firm never receives more than its claims excludes bail-out

within the system; also, under full information, capping bilateral reimbursements by

the corresponding liabilities is a common practice. Another type of constraints aims

at minimizing the impact of distressed firms. For example, some legislations require

distressed firms to be fully repaid or non-distressed firms to reimburse fully their

liabilities.6 Adding constraints however limits the possibility of resolution. A first

task is to determine for which external values and cross-liabilities a solution satisfies

all the required constraints. For this we rely on flow analysis in networks.

Two approaches characterize CP-solutions. The first one is based on a measure

that evaluates the inequality of the transfers relative to the due ones. We rely on

the entropy measure: CP-solutions minimize the entropy measure over the solutions

satisfying the required constraints. The second approach, called axiomatization, eval-

5Or the regulator knows them but voluntarily dismisses the information, as in the case of a CCP.
6For the Lehman Brothers’ resolution, creditors who lost their claims on the US branch had

nevertheless to reimburse their liabilities to the firm, but compensation was possible in the UK.
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uates a rule through ’properties’ (axioms) that the regulator considers as desirable.

Properties may bear on the solution assigned to a problem or on the rule’s behavior,

i.e. on how the assigned solution changes when the data of the problem varies. Con-

sidering rules allows one to address questions such as: Can a firm be penalized for

earning more from outside? Can the other firms be penalized? Negative answers to

these questions impose some form of monotony in the assigned solutions. The three

main properties used to characterize the CP-solutions are monotony, proportional

target and creditors’ priority.

The full CP-solutions are built on two indices per firm, which reflect proportional-

ity in each direction, reimbursements made and payments received. Consider firm i.

i’s rescue index adjusts up each claim of i if this is necessary to avoid its bankruptcy.

i’s reimbursement ability index is determined by creditor’s priority and specifies the

common proportion by which i reimburses each of its bilateral liabilities adjusted by

the creditor’s rescue index; i’s ability index thus depends on the composition of its

debt through the need to reimburse more some creditors than others (which occurs

if some have a rescue index larger than 1). In turn, the ability indices determine the

payment received hence the need to be rescued: indices are interdependent. When

bilateral reimbursements may exceed the corresponding liabilities, the CP-solution

is bi-proportional, meaning that each reimbursement is equal to the liability multi-

plied by the borrower’s ability and creditor’s rescue index. When reimbursements

are capped by liabilities, the CP-solution is a truncated version of a bi-proportional

solution. Whatever case, the reimbursement of a liability is affected by both the

borrower’s reimbursement ability and creditor’s rescue index, implying that the com-

position of a firm’s debt affects its reimbursements. Coarse CP-solutions are also

built on rescue indices, one for each firm, but the reimbursement index is common to

all, reflecting the overall capacity of the regulator to reimburse adjusted claims. As

a result, the composition of a firm’s debt has no effect on its reimbursements.

Related literature. The paper is related to several strands of the literature. A

first strand addresses the adjudication of conflicting claims when an estate must be

divided among claimants whose claims’ total is larger than the estate. This ’simple’

claims problem introduced by O’Neill (1982) arises in a large number of situations,
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ranging from inheritance, tax allocation (Young 1987) and default by a single firm.

Allocating the estate in proportion of the claims is a widely used rule (provided

there are no specific constraints). Other rules, such as the ’Talmud’ rule suggested

by the Talmud, have been defined and axiomatized (Aumann and Maschler (1985)

and Thomson (2003) survey). Our model follows a similar approach in a much more

general setting where firms hold claims on each other and face bankruptcy constraints.

In such a cross-liabilities setting, Eisenberg and Noe (2001) define a rule (hereafter

EN rule) when the firms’ external values are positive. The EN rule requires a firm

to reimburse each of its creditors in proportion of their claims independently of their

health (see Csoka and Herings (2018) for an axiomatization). When some external

values are negative, such proportionality in reimbursements may trigger bankruptcy

avoidable by using the CP-rule, which adjusts reimbursements to the creditors’ health.

In practice, proportionality in reimbursements is not satisfied (for example, in 2011,

private creditors accepted a 50 percent loss on their Greek bonds). Based on the

EN rule, Rogers and Veraart (2013) introduce costs to default on internal debts and

show that the stockholders of a pool of firms may benefit from merging with a failing

bank when these costs are high enough. Our setting differs since default within the

system does not involve costs but those on external costs are (implicitly) very high and

the transfers are decided by the regulator. Finally, Stutzer (2018) and Schaarsberg,

Reijnierse and Borm (2018) study how to extend some of the rules defined in simple

claims problems to those with cross-liabilities (assuming positive external values).

Using a consistency axiom, the latter paper shows that extended solutions exist but

are not unique, except for a specific structure of liabilities called ’hierarchical’. This

is in line with our analysis where the same consistency axiom is too weak to pin down

the constrained proportional solutions.

A second strand of the literature evaluates the fairness of an allocation of resources

or losses (in the case of taxation) by computing a measure (often called index) meant

to reflect a distance to a kind of ideal. Such approach applies quite generally, for

example for measuring the segregation of students’ assignment to schools (Frankel

and Volij 2011). There are a variety of measures: the Gini index, the family of

Atkinson’s indices, the Mutual Information index, and the entropy one used here.
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Balinski and Demange (1989-a) and recently Moulin (2016) use entropy to define

proportionality in two-dimensional settings under various constraints (see the latter

paper for further references).

Finally, a large empirical literature evaluates the effect of cross-liabilities on de-

faults and systemic risk by conducting simulations on calibrated systems, relying on

the EN rule (see the survey of Upper (2011) who also discusses the issue of missing

information on bilateral values) or on an exogenous process of propagation of defaults

through balance-sheets (see e.g. Gai and Kapadia (2010)).

Section 2 introduces the model, defines solutions and their properties, and de-

scribes the simple claims problem and EN rule. Sections 3 and 4 study coarse and

full rules. Section 5 gathers the proofs.

2 Solutions in a financially linked system

Consider a system composed of n firms, say banks and intermediaries in a financial sys-

tem, or countries in an integrated market. Denote N = {1, · · · , n}. At a liquidation

date, firms have claims and liabilities between themselves and with entities outside

N . Firm i’s nominal liability to firm j is represented by non-negative `ij (equivalently

`ij is j’s claim on i) where by convention `ii is null. Denote ` = (`ij)i,j=1,··· ,n and `Ni

and `iN i’s total claims and liabilities: `Ni =
∑

j∈N `ji and `iN =
∑

j∈N `ij.
7 The

liabilities within N all have the same priority. The liability graph G represents the

positive liabilities within N : (i, j) is in G if `ij > 0. Each firm i in N has also claims

(stocks, loans..) on entities outside N , with value ai, and liabilities to them (debts,

deposits), with value di. i’s net external value is defined by zi = ai − di.
An allocation describes the (possibly partial) reimbursements within N . We con-

sider two types of allocations. A full allocation specifies the non-negative transfer bij

from each firm i to each other one j. To fix the terminology, bij is referred to i’s

reimbursement to j or j’s payment by i. Denote b = (bij)i,j=1,··· ,n where by conven-

tion bii = 0. A coarse allocation specifies the total reimbursement and total received

payment by each firm, denoted respectively by biN and bNi for firm i,8 which sat-

7We use throughout the following notation. For a matrix x = (xij) and two subsets A and B of
the rows and columns’ indices, we denote xA,B =

∑
i∈A,j∈B xij (the comma is dropped when there

is no confusion). Similarly, for a vector x = (xi), xA =
∑

i∈A xi.
8Although these totals are not computed as sums of bilateral transfers, it is convenient to use
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isfy the balance condition:
∑

i biN =
∑

i bNi. Denote B = (biN , bNi)i=1,··· ,n. Natural

allocations are the exact ones, which specify no default within N : the coarse exact

allocation is defined by bNi = `Ni and biN = `iN for each i and the full exact one by

bij = `ij for each i, j.

The information available to the regulator conditions which types of allocations

make sense and which constraints may be imposed on the allocations, as described

below. We always assume that the regulator knows the net external values, as well

as the total value of the internal liabilities and claims of each firm. If the regu-

lator’s information is limited to these values, the problem is coarse described by

Π = (zi, `iN , `Ni)i=1,··· ,n where totals are balanced:
∑

i `iN =
∑

i `Ni. In that case,

the regulator can reasonably only choose coarse allocations. If the regulator knows

furthermore all bilateral liabilities, the problem is described by the full set of data:

π = (z, `). In that case, the regulator can choose coarse or full allocations.

Default on external creditors triggers bankruptcy. Thus, i is not bankrupt at an

allocation (B or b, see footnote 8) if ai + bNi ≥ biN + di, or equivalently, if i’s net

worth Wi is non-negative where Wi = zi + bNi − biN . The condition stems from

limited liability, according to which stockholders cannot be forced to inject cash.

If each firm has a non-negative nominal net worth, zi + `Ni − `iN ≥ 0 for each i,

no firm is bankrupt at the exact allocation. On the contrary, a firm that has a

negative nominal net worth, called distressed, goes bankrupt at the exact allocation.

Avoiding its bankruptcy inflicts a loss to the other firms in N .9 As a result, some

non-distressed firms may end up in difficulty and default on their internal liabilities or

even go bankrupt through contagion effects. Solutions and rules, defined next, reflect

that the primary objective of the regulator is to avoid bankruptcy, while preserving

reimbursements within the system as much as possible, in particular by choosing the

exact allocation provided no firm is bankrupt. Additional constraints reflecting law or

common practice will be imposed later on, thereby affecting which problems admit a

the same notation as for the totals associated to a full allocation b. In particular, the definitions
that bear on reimbursements and payments only through their total for each firm and not on the
bilateral values are valid for coarse or full solutions by having B = (biN , bNi)i=1,··· ,n either a coarse
allocation or the totals associated to a full allocation b.

9zi +bNi−biN ≥ 0 implies that i’s net reimbursement is lower than its net liabilities: `iN −`Ni >
biN − bNi.

7



solution. This explains why the domain F on which a rule is defined is left unspecified

in the following definition.

Definition 1 Consider a problem Π or π. The set of distressed firms, denoted by D,

is D = {i, zi + `Ni − `iN < 0}. A solution is an allocation B or b for which no firm

is bankrupt:

Wi = zi + bNi − biN ≥ 0 for each i. (1)

A rule F on a domain F assigns to each problem in F a solution, which must be the

exact solution when there are no distressed firms, i.e. when the set D is empty.

To illustrate the setting consider the following example, which will be used repeatedly.

Example 1 z1 = −1, z2 ≥ 1
4
, z3 = 3

4
and the liabilities matrix

` =


0 1 a

a 0 1

1 a 0

 where 0 < a < 1.

For z2 ≥ 1
4
, a solution exists (see the next paragraph). Total liabilities and total

claims are equal across the firms and 1 is distressed. Assume z2 = 3
4
. Under coarse

information, firms 2 and 3 cannot be distinguished, so the regulator should reasonably

assign them identical transfers. Under full information, distressed 1 is known to have

borrowed more from 2 than from 3, and 3 to have borrowed more from distressed 1

than from 2. A regulator may use this information and assign different totals, thereby

affecting differently 2 and 3’s net worths.

It is easy to see that a problem admits a solution if the system is not globally

indebted, i.e. if
∑

i zi ≥ 0. The condition is necessary due to the conservation of

aggregate net worth: because the transfers within N cancel out,
∑

iWi is equal to the

aggregate external value
∑

i zi at any allocation. Hence Wi ≥ 0 for each i requires∑
i zi ≥ 0. The condition is sufficient10 and, furthermore, there are many solutions

if
∑

i zi > 0. In that case, the sole no-bankruptcy conditions (1), which depend on

the external values only, leave a lot of flexibility in choosing the transfers. We now

introduce constraints to relate transfers to the claims and liabilities. These constraints
10 For example, for the firms with zi < 0, set bNi = −zi and biN = 0. For the firms with zi ≥ 0,

set bNi = 0 and biN such that zi ≥ biN and
∑

i,zi≥0 biN = −
∑

i,zi<0 zi. The latter conditions are
compatible since

∑
i zi ≥ 0 writes −

∑
i,zi<0 zi ≤

∑
i,zi≥0 zi. These transfers are balanced and no

firm is bankrupt: solutions exist and there are numerous
∑

i zi > 0.
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are not required throughout. One goal of the analysis is precisely to determine their

implications, in particular the problems for which they are compatible and the shape

of the solutions.

Constraints on totals We define constraints that bear on the totals reimbursed and

paid by each firm in relation with their total claims and liabilities. They apply to a

coarse solution or to the totals of a full one.

Bounds Reimbursements are bounded if no firm reimburses more in total than its

liabilities’ total: biN ≤ `iN for each i. Payments are bounded if no firm receives

more in total than its claims’ total: bNi ≤ `Ni for each i. For short, a solution is said

to be R&P -bounded if both reimbursements and payments are bounded.

Bounded payments exclude a bail-out within the system. At a solution, they

result in distressed firms defaulting on their liabilities to N : biN ≤ zi + `Ni implies

biN < `iN for i ∈ D.

Creditors’ priority (over stockholders) requires that a firm with positive net worth

fully reimburses its liabilities, i.e. for each i: either biN = `iN or zi + bNi − biN = 0.

In practice, R&P–boundedness and creditors’ priority are often imposed. They

prevent coordination failure without further regulators’ intervention if each firm has

a positive nominal worth,11 as stated in the following property:

Property 1 Let the net nominal worth of each firm be positive. The exact coarse

solution is the unique one that satisfies R&P–boundedness and creditors’ priority.

We will mainly consider solutions that satisfy additional constraints meant to mini-

mize (in some sense) the distortions posed by distressed firms:

Definition 2 A solution B to a problem is said to be tight if it is R&P -bounded

and satisfies

for each i ∈ D : bNi = `Ni (full payments to distressed) (2)

for each i ∈ Dc : biN = `iN (full reimbursements by non-distressed) (3)

11This assumption is slightly stronger than assuming no distressed firms. If no firm is distressed
but some have null nominal worths, Property 1 does not hold. For example, consider two firms owing
the same amount to each other, say 1 unit, and with null external values. Their nominal net worths
are null. Many solutions satisfy R&P–boundedness and creditors’ priority: let each reimburse the
same amount b to the other with b less than 1.
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It is said super-tight if in addition the distressed firms’ net worth is null:

for each i ∈ D : zi + `Ni = biN (minimal rescue) (4)

The tightness conditions can be interpreted as tools for limiting contagion within the

system: (2) require distressed firms to be fully repaid (even if they default) and (3)

require non-distressed firms to fully reimburse their liabilities total (even if they are

not fully repaid). In addition, minimal rescue constrains the loss due to the rescue

of distressed firms to be minimal (since rescue implies zi + `Ni ≥ biN). A super-tight

solution satisfies creditors’ priority since the non-distressed firms do not default.

Bilateral constraints Under full information, the bilateral liabilities are known,

calling for assigning bilateral transfers b related to them. A natural requirement is

that a firm makes a positive transfer only to a creditor. A stronger one is that this

transfer is capped by the corresponding liability. Formally:

Full allocation b is liability-compatible if for each i, j : bij > 0 only if `ij > 0, equiva-

lently only if (i, j) ∈ G. Allocation b is bilaterally-bounded if for each i, j : bij ≤ `ij.

Clearly, a bilaterally-bounded allocation is liability-compatible. It is easy to check

that Property 1 extends as follows: The exact full solution is the unique solution that

is bilaterally-bounded and satisfies creditors’ priority.

We now provide two illustrations of the setting.

Illustration 1: Simple claims problem (O’Neill 1982) In a simple claims prob-

lem, an amount T has to be divided among a group J of claimants, each one having

a claim, cj for j, where
∑

j cj ≥ T . In addition, each claimant j must receive a

minimum mj, mj ≥ 0, which defines j’s bankruptcy constraint. The problem is thus

described by σ = (J, T, c,m). In our model, a simple claims problem obtains if a sin-

gle firm is indebted within the system.12 Furthermore, as shown in Section 3, general

problems are reduced to simple claims problem under some conditions.

The next definition introduces the constrained proportional rule, which extends

the proportional rule to account for the minimal requirement.13

12 If 1 is the indebted firm, J = N −{1} and cj = `1j for j in J . Assuming creditor’s priority and
bounded reimbursements, necessarily T = min(z1, `1N ). Set mj = max(−zj , 0) for j ∈ J to avoid
j’s bankruptcy.

13The literature on simple claims problems does not consider minimal requirements (i.e. implicitly
mj = 0) except Balinski and Young (1982). Their problem is to allocate a total number of seats T in
a parliament to districts, given the population numbers (c1, · · · , cp) in the districts and a minimum
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Definition 3 Let σ = (J, T, c,m) be a simple claims problem. A solution x = (xj)j∈J

to σ assigns an amount xj to each claimant j such that xJ = T and mj ≤ xj for each

j. σ admits a solution iff mJ ≤ T . In that case, the constrained-proportional

solution, for short cp-solution, is the unique solution x for which there are positive

δ and (µj)j∈J such that for each j in J :

xj = δcjµj where µj ≥ 1 with µj = 1 if xj > mj.

Surely δ ≤ 1. If mj ≤ cj for each j then x is payment-bounded: xj ≤ cj for each j.

The cp-rule assigns to each problem its cp-solution.

The cp-solution can also be written in the form xj = max(δcj,mj) where δ is the

unique value in ]0,1] such that
∑

j xj = T . Introducing the µj is useful for the sequel.

The cp-rule can be described as follows. Assume to simplify the minimum required

by each firm to be lower than its claim: mj ≤ cj for each j. Then, for T = cJ , each

claimant receives its claim: xj = cj, setting δ and µj all equal to 1: The cp-solution

is exact. Decrease T ; the cp-solution assigns the proportional solution as long as no

one is bankrupt: x = δc for δ = T
cJ

is the cp-solution as long as δcj ≥ mj for each

j, setting each µj equal to 1. This reflects that, ideally, each firm should receive the

same amount per unit of claim. Such a property is extended to general problems in

Section 3, where it is referred to as Proportional payments’ target. If some mj are

positive, decreasing T further, the proportional allocation hits the minimum for some

j. In that case each claimant receives the same payment per unit of claim except

those who would be bankrupt and receive relatively more: j receives δcj except if

δcj < mj, in which case the payment to j is scaled up by µj larger than 1. µj is

qualified as j’s rescue index.

The above description provides a characterization of the cp-rule (see Lemma 1

in Section 5): the cp-rule is the only rule that satisfies the ideal of proportionality

described by Proportional payments’ target together with a very natural monotony

property with respect to the amount T , according to which no one’s assigned amount

goes down when the estate T goes up. Although the cp-rule almost does not need a

justification, other rules reflect some idea of proportionality. One assigns to each j its

mj for each j. Since the seats are not divisible, the allocation must be integer-valued. Considering
the cp-solution to be the ideal one, Balinski and Young study how to transform it into integers.
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minimum mj and allocates the remaining, T −
∑

i∈J mj (which is non-negative for a

feasible problem) in proportion of the residual claims if these are positive.14 This rule

assigns proportionally a smaller amount than the cp-one hence harms (resp. benefits)

those who have a large (resp. small) residual claim relative to others. It does not

satisfy Proportional payments’ target.

Illustration 2: Clearing reimbursement ratios (Eisenberg and Noe 2001).

Assume that each firm reimburses the same fraction of its claims to each of its credi-

tors: bij = τi`ij where τi is i’s reimbursement ratio, 0 ≤ τi ≤ 1. The vector (τi)i=1,··· ,n

is said to be clearing if no firm is bankrupt and creditors’ priority is satisfied:

for each i : τi`iN −
∑
j

τj`ji ≤ zi with τi = 1 if the inequality is strict.

When all external values are positive, a clearing vector exists and is unique, as shown

by EN, thereby defining a rule that assigns bilaterally-bounded (but maybe not tight)

solutions. When some external values are negative, there are problems for which any

ratio vector triggers bankruptcy whereas bilaterally-bounded solutions exist. The

following example illustrates this point.

Example 2 Consider a simple claims problem where 1 be the only indebted firm.

At a clearing vector, 1 recovers nothing and reimburses τ1 = min( z1
`1N

, 1) per unit

of liability to each creditor. Consider three firms, z1 = 1, z2 = −0.7, z3 = 2 and

`12 = `13 = 1. Hence τ1 = 0.5 and 2 and 3 receive 0.5 each. 2’s net worth is −0.2:

2, who is not distressed, is bankrupt by ’contagion’. Bankruptcy is avoided at the

cp-solution: setting m2 = 0.7 and m3 = 0 (see footnote 12), payments are b12 = 0.7

and b13 = 0.3, associated to δ = 0.3, µ2 = 7/3 and µ3 = 1.

3 Coarse rules

This section extends the cp-rule to the coarse setting with cross-liabilities. We first

determine problems that admit coarse solutions satisfying some of the constraints

introduced in Section 2.

14Assign yj = mi + γmax(0, cj − mj) to each j where γ is the unique value in (0,1) such that∑
i∈J γmax(0, cj−mj) = T −

∑
i∈J mj . It is easy to show that xj > yj if and only if xj = δcj > mj ,

i.e. j is unconstrained at the cp-solution.

12



3.1 The existence and structure of super-tight solutions

The next proposition characterizes the problems that admit R&P -bounded coarse

solutions. Furthermore, it shows that these problems admit super-tight solutions,

which are easily found by solving a simple claims problem. Let the shortfall of the

distressed firms be defined by SD = −(zD + `N,D − `D,N); it is equal to the opposite

of their (negative) nominal worths.

Proposition 1 Coarse problem Π admits a R&P -bounded solution if and only if∑
i

min(zi, `iN) ≥ 0 (5)

and for each i : zi + `Ni ≥ 0. (6)

Denote by C the set of problems that satisfy (5) and (6). A problem Π in C admits

solutions that are super-tight. At these solutions, payments to the non-distressed firms

(bNj)j∈Dc solve the simple claims problem σ = (Dc, T, c,m) where T is equal to their

claims’ total diminished of the shortfall of the distressed firms: T = `N,Dc−SD, and for

each j in Dc: cj equals j’s total claim `Nj and lower-bound mj equals max(`jN−zj, 0).

It is easy to see why conditions (5) and (6) are necessary for a R&P -bounded solution

to exist. Consider (5). i’s no-bankruptcy requires zi ≥ biN−bNi, hence min(zi, biN) ≥
biN − bNi. Summing these inequalities over all i, the balancedness condition implies∑

i min(zi, biN) ≥ 0. Consider (6). zi + `Ni is an upper-bound to i’s net worth,

achieved when i reimburses nothing and receives its claims; hence it must be non-

negative for i not to be bankrupt.

We show that (5) and (6) are sufficient by constructing a super-tight solution.

At such a solution, only the payments to the non-distressed firms are flexible. To

achieve super-tightness, the regulator must collect `iN from each non-distressed firm

i, repay `Ni to each distressed i, who gives back zi + `Ni (which is non-negative under

(6) but less than `iN). This leaves the total T = `Dc,N + zD for the payments to the

non-distressed firms. T is exactly equal to the gap between their due claims `N,Dc

and the shortfall SD.15 T must be allocated to the non-distressed firms so that no one

is bankrupt. This requires zj + bNj ≥ `jN for each j in Dc (since j fully reimburses

15The identity `Dc,N + `D,N = `N,Dc + `N,D implies `Dc,N + zD = `N,Dc + `N,D − `D,N + zD,
which is equal to `N,Dc − SD.
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its liabilities), hence the lower bound mj = max(`jN − zj, 0) on bNj. This proves that

the payments (bNj)j∈Dc solve the simple claims problem σ. σ admits a solution which

is furthermore payment-bounded because the feasibility condition
∑

i∈Dc mi ≤ T is

equivalent to16 (5) and mj is less than j’s claim `Nj since j is non-distressed.

The problem σ can be seen as allocating the shortfall to the non-distressed firms.

σ admits many solutions if
∑

i∈Dc mi < T . As a result, a rule selecting super-tight

solutions may assign distinct solutions to two distinct problems that induce the same

σ. For example, consider problems with four firms and identical data except for z1, z2,

which may differ but sum to the same total and make both 1 and 2 distressed. These

problems all induce the same simple claims σ problem on {3, 4}. An admissible rule

assigns bN3 = m3, bN4 = T −m3 if z1 > z2 and bN3 = T −m4, bN4 = m4 if z1 ≤ z2.

This does not make much sense, in particular because it is not known how much each

3 and 4 have lent to or borrowed from 1 and 2. The rule introduced in the next

section does not have this drawback.

3.2 The coarse constrained proportional rule

According to Proposition 1, super-tight coarse solutions are characterized by solutions

to simple claims problems, which determine the payments to the non-distressed firms.

The CP- solutions are based on the cp-solution to these simple problems.

Definition 4 Let Π be in C. The (coarse) constrained-proportional solution, for

short the CP-solution, is the unique super-tight solution B such that the payments

(bNj)j∈Dc to the non-distressed firms satisfy bN,Dc = `N,Dc−SD and there are positive

δ and (µj)j∈Dc for which

for each j ∈ Dc : bNj = δ`Njµj and µj ≥ 1 with µj = 1 if Wj > 0. (7)

The CP-rule assigns to each problem Π in C its CP-solution.

The CP-solution can be described as follows. Distressed firms are fully repaid their

claims and reimburse the maximum to avoid bankruptcy. Non-distressed firms fully

repay their liabilities. The amount T = `N,Dc − SD collected by the regulator is

16It suffices to prove T −
∑

i∈Dc mi =
∑

imin(zi, `iN ). The identity max(`iN − zi, 0) + min(`iN −
zi, 0) = `iN − zi implies mi + min(`iN , zi) = `iN , hence, summing over Dc:

∑
i∈Dc mi = `Dc,N −∑

i∈Dc min(zi, `iN ). This yields T −
∑

i∈Dc mi = zD +
∑

i∈Dc min(zi, `iN ). This proves the claim
since for i in D surely `iN − zi > 0 hence zi = min(zi, `iN ).
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allocated to the non-distressed firms according to the cp-solution in the simple claims

problem that account for their claims and bankruptcy constraints (compare conditions

(7) with Definition 3). When the µj are all equal to 1, the payments are proportional

to claims with a factor δ. When some µj are larger than 1, δ is the minimum payment

per unit of claim and a firm j is repaid more (µj > 1) only to avoid its bankruptcy.

We call µj j’s rescue index.

Example 1-b Consider Example 1. The regulator knows z1 = −1, z2, z3 = 3
4

and

`iN = `Ni = 1 + a for each i. Conditions (5) write z2 ≥ 1
4
. We have SD = 1 and

T = 1 + 2a. The CP-solution allocates T to 2 and 3 proportionally if both 2 and 3’s

worths are non-negative: it allocates 1
2

+ a to each if W2 = z2− 1
2
≥ 0 (W3 is positive

equal to 1
4
). For z2 ≤ 1

2
, reimbursement’s proportionality would make 2 bankrupt,

so that 2 is repaid the minimal amount to avoid its bankruptcy: bN2 = 1 + a − z2
and W2 = 0. 3 is repaid what is left from T : bN3 = a + z2, as long as 3’s net worth

W3 = 3
4

+ a+ z2 − (1 + a) is non-negative i.e. z2 ≥ 1
4
, which is (5).

We characterize the CP-rule through two approaches, first by minimizing the

entropy inequality measure, second by its properties (axiomatization).

Minimizing entropy The entropy measure on allocation B is defined by:

f(B) = a
∑
i

biN

[
log

(
biN
`iN

)
− 1

]
+ (1− a)

∑
i

bNi

[
log

(
bNi
`Ni

)
− 1

]
where a is a parameter between 0 and 1.

f measures a distance to proportional allocations. To illustrate, consider the set

of allocations defined by a maximal amount S transferable across firms where S is

lower than the total liabilities `NN : B satisfies
∑

i bNi =
∑

i biN and
∑

i bNi ≤ S.

In that case f is minimized by setting reimbursements proportional to liabilities and

payments proportional to claims: biN = δ`Ni and bNi = δ`Ni for δ = S
`NN

.

In our model, allocations are subject to different constraints than an overall

amount of transfers. To account for non-bankruptcy and R&P -boundedness, we

consider the following program:

P : minimize f(B) over the R&P -bounded solutions B of Π.

Denote by C∗ the set of problems that satisfy each inequality in (5) and (6) strictly.
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Proposition 2 Let Π be in C∗. Whatever a in ]0, 1[, the CP-solution is the unique

solution that solves P.

Proposition 2 states that the CP-solution minimizes entropy f over all R&P–bounded

solutions. Since the CP-solution is super-tight, minimizing entropy implies full reim-

bursements by non-distressed firms, full repayment to distressed ones and minimal

rescue. Thus, under coarse information, super-tightness does not restrict the set of

problems admitting a R&P–bounded solution (Proposition 1) and furthermore is nec-

essary for a R&P–bounded solution to be as proportional as possible. The proof of

Proposition 2 relies on the first order conditions of the Lagrangean of convex program

P (which are necessary and sufficient for a problem in C∗ because the feasible set of

P has a non-empty relative interior). Up to a transformation, δ is associated to the

multiplier of the balanced condition on transfers and the rescue indices µj to the

non-negativity of j’s net worth.

The axiomatic approach Let F denote a rule that assigns to each Π in C a coarse

solution. We characterize the CP-rule by two properties. The first property, Propor-

tional payments’ target, bears on each solution assigned by F , B = F (Π). It states

that firms should be repaid in proportion of their claims whenever this is possible.

Specifically, consider a subgroup I of firms and assume that the total payment they

receive at B is not proportional to their claims. Contemplate reallocating this to-

tal payment within I without changing their reimbursements. If such a reallocation

does not make any one bankrupt, then it should be implemented. Note that the

reallocation has no affect on firms outside the subgroup I. Formally:

Proportional payments’ target Solution B to Π satisfies proportional payments’

target if the following holds: For each I subset of N , let δ be the ratio of the total

payment received by I over the total of their claims: δ = bNI

`NI
. If zi + δ`Ni ≥ biN for

each i in I, then bNi = δ`Ni for each i in I.

The second property expresses the idea that no firm should be penalized by increases

in net external values. Denote by Wi(Π) i’s net worth at the solution assigned by

rule F to problem Π: Wi(Π) = zi + bNi − biN where (biN , bNi)i=1,··· ,n = F (Π).

Worths’ monotony (with respect to z) Rule F is monotone if no one’s net worth

goes down when the external value of a firm goes up: Let Π and Π′ be two identical
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problems except for j’s external value. If zj < z′j, then Wi(Π) ≤ Wi(Π
′) for each i.

Iteration of the property implies that if the external value of several firms increase,

no one’s net worth decreases.

Proposition 3 The CP-rule is the unique rule on C that assigns tight solutions ver-

ifying proportional payments’ target and that is worths’ monotone with respect to z.

A rule satisfying the properties thus necessarily chooses a solution that satisfies mini-

mal rescue. The proof goes as follows. Starting with external values for which no firm

is distressed and the exact solution is assigned, let decrease those of the distressed

firms up to the point where they become all distressed and their net worth becomes

null at the exact solution. Decreasing further their external values, worths’ monotony

of F implies that their net worth must be null (hence minimal rescue) and that the

total payment T to the non-distressed firms decreases. T is distributed according

to a ’reduced’ rule in a simple claims problem (Proposition 1). This reduced rule is

monotone with respect to T (due to the monotony of F ) and satisfies proportional

payments’ target, which characterizes the cp-rule (Lemma 1).

3.3 Netting

Netting positions is an increasingly used technique to decrease exposures. It can

be implemented between two entities by cancelling positions in opposite directions,

within a cycle (called compressing), or at a centralized level as performed by a central-

counterparty (CCP). This section describes the impact of netting by a CCP on the

feasibility of resolution.17 Let N be the members of a CCP and ` = (`ij)i,j=1,··· ,n

their positions cleared by the CCP. Netting transforms ` into coarse liabilities L =

(LNi, LiN)i=1,··· ,n as follows

if `Ni − `iN ≥ 0 (i is long) : LNi = `Ni − `iN and LiN = 0

if `Ni − `iN < 0 (i is short) : LNi = 0 and LiN = `iN − `Ni.

Let short firms reimburse less than their netted liabilities LiN , long firms receive less

than their netted claims LNi, and set all other transfers to zero. Such an allocation

is R&P -bounded for L. It is possible to make no firm bankrupt if (and only if) the

17The impact of a CCP on resolution is far from being limited to netting in particular because a
CCP asks ex-ante for contributions to a default fund that can be used in case of stress.
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following conditions are satisfied, where N− and N+ denote the sets of short and long

firms: ∑
i∈N− min(zi, LiN) +

∑
i∈N+

min(zi, 0) ≥ 0 (8)

for each i ∈ N− : zi ≥ 0 and for each i ∈ N+ : zi + LNi ≥ 0. (9)

These conditions follow from Proposition 1 applied to L. They are stronger than those

for the original liabilities. Condition (8) states that the maximum that can be reim-

bursed by short members, accounting for their resources and liabilities,
∑

i∈N− min(zi, LiN),

covers the losses of the long members due to their external activities, −
∑

i∈N+
min(zi, 0).

(8) implies
∑

i min(zi, `iN) ≥ 0, the resource condition (5) without netting. Condi-

tions (9) require no short firm to have a negative external value and no long one

to be distressed for the original liabilities. They imply the corresponding conditions

(6) without netting. Netting hampers some problems to admit solution because it

reduces the flexibility in transfers: it has the same effect as forcing a short member

to be fully repaid on its claims and a long member to fully reimburse its liabilities,

independently of their distressed status.

Under minimal rescue, each short member i reimburses the amount min(zi, LiN)

to the CCP, which in turn redistributes the total
∑

i∈N− min(zi, LiN) to the long

members so as to avoid their bankruptcy. Hence netting can be viewed as trans-

forming the initial problem into a simple claims one where the CCP is the unique

debtor and the claimants are the long firms. Although not made public, propor-

tional repayments and firms’ health are two main objectives for a CCP so that the

CP-procedure is likely to be close to CCP’s practice, meaning that long members

are repaid bNi = max(−zi, δLNi) where δ is the unique value in ]0,1] such that∑
i∈N+

max(−zi, δLN,i) =
∑

i∈N− min(zi, LiN).

4 Full resolution rules

This section extends the coarse constrained proportional rule to the full information

setting when the regulator, knowing bilateral liabilities, uses a full rule that specifies

bilateral transfers related to these liabilities. As defined in Section 2, a minimal rela-

tionship is liability-compatibility, according to which a firm makes a positive transfer

to another one only if it is liable to it, and a stronger one is bilateral-boundedness, ac-
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cording to which the transfer is not greater than the liability. We start by examining

which problems admit solutions satisfying one of these conditions (Proposition 4).

4.1 Existence of liability-compatible or bilaterally-bounded solutions

As a preliminary result, Property 2 states that tight and bilaterally-bounded solu-

tions require each non-distressed firm to reimburse fully each of its liability and each

distressed firm to have each its claims to be fully repaid.

Property 2 Define GD = {(i, j) ∈ G, i ∈ D, j /∈ D}. At a tight and bilaterally-

bounded solution b, bij = `ij for any (i, j) not in GD; hence b writes b = (b|GD , `|N2−GD).

The proof is straightforward: tightness requires full reimbursement by non-distressed

firm i: biN = `iN ; adding bilateral bounds bij ≤ `ij for each j implies bij = `ij.

Similarly, tightness requires full repayment to distressed firm j, bNj = `Nj, which

together with bilateral bounds imply bij = `ij for each j.

The next proposition uses the following definition. Given a subset A ofN , letD(A)

be the set of debtors of A: D(A) = {i ∈ N such that there is j ∈ A with `ij > 0}.

Proposition 4 The necessary and sufficient conditions for π to admit

(a) a R&P -bounded and liability-compatible solution are:

for each A,B subsets of N : zA + `Ac∩D(B),N + `N,A∩Bc ≥ 0 (10)

(b) a tight and liability-compatible solution:

for each A,B subsets of N : zA + `Ac∩D(B),N + `N,A∩Bc ≥ `A∩Dc∩D(B)c,N + `N,D∩Ac∩B(11)

(c) a bilaterally-bounded solution:

for each A subset of N : zA + `Ac,A ≥ 0 (12)

(d) a tight and bilaterally-bounded solution

for each A subset of N : zA + `Ac,A ≥ `A∩Dc,Ac + `A∩D,Ac∩D. (13)

The proposition is proved by defining a graph with lower and upper capacities for

which the existence of a circulation is equivalent to the existence of a solution sat-

isfying the required constraints. It is easy to see why conditions (12) are necessary

for the existence of bilaterally-bounded solutions and why they differ from (13) when

tightness is required. At a bilaterally-bounded solution, the left-hand side of (12) is
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a maximal amount accruing to A from entities outside A, composed of zA (possibly

negative) from entities outside N and `Ac,A, when each entity outside A reimburses

its liability to each one inside A. This maximal amount must be non-negative to

avoid bankruptcy. When tightness is required, there are forced reimbursements from

A to Ac, represented by the right hand side of (13): `A∩Dc,Ac are those from the

non-distressed firms to the distressed ones and `A∩D,Ac∩D from the distressed firms

in A to the distressed ones (Property 2). Conditions (10) and (11) for the existence

of liability-compatible solutions are interpreted similarly but more complex because

maximal transfers from a subset to another one depend on other transfers. This

explains why one needs to consider any A and B, with B possibly not subset of A,

Let us illustrate the impact of tightness in Example 1. The impact of bilaterally-

boundedness instead of liability-compatibility is illustrated in Example 1-d.

Example 1-c Let
∑

i zi = z2− 1
4
≥ 0. At any payment-bounded solution z1 + `N1 ≥

b1N , which writes a ≥ b1N . Hence at a bilaterally-bounded and tight solution, 2

receives at most a from 1, a from 3 (Property 2) and reimburses 1 + a, so that

W2 ≤ z2 + 2a− (1 + a) = z2 + a− 1. The solution exists only if 2 is not bankrupt if

z2 + a− 1 < 0. If the solution is not required to be tight, let 2 reimburse only z2 + a

to 3 instead of 1 so that W2 = 0 and W3 =
∑

i zi = z2− 1
4
≥ 0: a bilaterally-bounded

solution exists even if z2 + a− 1 < 0 provided z2 − 1
4
≥ 0.

4.2 Bi-proportional rule

This section aims at approaching proportionality under full information when solu-

tions are required to be liability-compatible. In that purpose, we adapt the entropy

objective to measure inequality in the bilateral transfers assigned by a full allocation:

f(b) =
∑

(i,j)∈G

bij

[
log

(
bij
`ij

)
− 1

]
. (14)

Writing f(b) as the sum over all i of
∑

j,(i,j)∈G bij[log(
bij
`ij

)−1], the ith term reflects that

the ideal reimbursements by i to its creditors are proportional. Similarly, writing f(b)

as the sum over all i of
∑

j,(j,i)∈G bji[log(
bji
`ji

)−1], f(b) reflects that the ideal payments

to i from its borrowers are proportional. As previously, one searches for admissible

solutions minimizing the entropy objective. Consider the following program:

P1 : minimize f(b) over the tight and liability-compatible solutions b of π.
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Denote by T ∗ the set of problems that satisfy each inequality in (11) strictly. These

problems are the ones admitting a tight and liability-compatible solution that is

furthermore strictly positive on G, hence satisfies bij > 0 if and only if `ij > 0.

Proposition 5 Let π be in T ∗. The solution to P1 is the unique super-tight solution

b for which there are positive scalars (δi, µi)i=1,··· ,n that satisfy

for each (i, j) : bij = δi`ijµj (bi-proportionality) (15)

µj ≥ 1 with µj = 1 if Wj > 0 (rescue conditions) (16)

Call b the constrained bi-proportional (CbiP) solution.

The feasible solutions of program P1 are required to be tight but not super-tight.

Since the CbiP-solution is super-tight, optimizing the entropy over T ∗ thus requires

the worth of the distressed firms to be null (minimal rescue).

If there are no distressed firms, the CbiP-solution is the exact one, associated to

δi and µi all equal to 1. As motivated below, let us call the positive scales (µi) rescue

indices (as for the CP-solution) and the positive scales (δi) Reimbursement ability

(R-ability) indices. According to (15), b is obtained from ` by multiplying i’s row by

R-ability index δi and j’s column by rescue index µj (hence b is liability-compatible

and positive on G): b is said to be bi-proportional to `.18 The indices are defined

up to a scaler: all (cδ, 1
c
µ) for positive c produce the same b; it follows that setting

the minimum of the µi equal to 1 is a normalization. Conditions (16) on µ thus

require the payments to a firm with positive net worth not to be upgraded relative

to others. As a result, j with positive Wj receives the minimal payment per unit of

claim from each of its creditors, δi from creditor i. In contrast, firm j with a rescue

index µj strictly larger than 1 would be bankrupt if each other firm i reimbursed j at

its minimum ratio δi. Consider now the scales δ. Summing over j equations (15) for

a fixed i yields biN = δî̀iN where ̂̀iN =
∑

j `ijµj represents the sum of i’s liabilities

each upgraded by the corresponding rescue index. Hence, writing δi = biN
`iN

`iN̂̀
iN

, δi is

decomposed into the product of two factors, each less than 1. The first factor, biN
`iN

,

is i’s overall reimbursement ratio; it is not greater than 1 due to the upper-bound on

18Bi-proportional matrices appear in various areas: in statistics for adjusting contingencies tables,
in economics for balancing international trade accounts (Bacharach 1965), or in voting problems
(Balinski and Demange 1989-a).
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i’s reimbursements, and equal to 1 if i is non-distressed. The second factor, `iN̂̀
iN

, is

the ratio of i’s liabilities to the upgraded ones.19 Overall δi is affected by i’s fragility

and the rescue of its creditors.

Let us examine the differences between the CP and the CbiP-solutions. When

there are no distressed firms they both coincide with the exact solution. When there

are distressed firms, as follows from (7), the CP-solution is defined as the CbiP-

solution except that the reimbursement scale δ is common to all institutions (hence

the rescue indices may differ across the two solutions; we do not introduce a different

notation for simplification). This has implication on the payments to non-distressed

firms (which are the only flexible quantities at a super tight solution). At the CbiP-

solution, summing over i equations (15) yields bNj = (
∑

i δi`ij)µj. Thus j’s payments

depend on j’s borrowers identities through their R-ability indices δi. At the CP-

solution instead, payment to j is equal to δ`Nj hence j’s payments do not depend

on j’s borrowers identities. The same implications follow for the worth levels of

non-distressed firms since they are equal to zj + bNj − `jN . To illustrate, consider

two non-distressed firms whose external values, total claims and total liabilities are

identical. They receive identical payments at the CP-solution but typically not at

the CbiP-solution when the composition of their claims differs.

Axiomatization Clearly, the CbiP-rule applied to simple claims problems coincides

with the cp-rule. The rules are more generally related through a ’consistency’ prin-

ciple, sometimes described as ’a part of a fair solution must be fair’. We apply this

principle at a solution b to evaluate the proportionality of the reimbursements made

by each single firm to the other firms, i.e. to evaluate for each i the proportionality

of (bij)j 6=i. For that, imagine all reimbursements made by the firms other than i fixed

to those recommended by b. We are left with a simple claims problem in which bij

has to be allocated to N − i knowing for each j its claim on i, `ij, and the minimum

amount j must receive from i, mi
j, to avoid bankruptcy. Since j reimburses bjN and

receives bN−i,j from firms other than i, mi
j = max(bjN −zj− bN−i,j, 0). cp-consistency

19According to this computation, the CbiP-solution can be expressed in terms of rescue indices

µ and reimbursement ratios τ = ( biN
`iN

): setting τi = δi
̂̀
iN

`iN
we have bij = τiµj`ij

`iN̂̀
iN

for each (i, j).

The rescue conditions are unchanged and the τi, not larger than 1, are equal to 1 on Dc. Such a
formulation does not easily extend to the case of bilaterally-bounded solutions studied next.
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requires i’s reimbursements at b to be allocated according to the cp-rule in this simple

problem.

cp-consistency Solution b is cp-consistent if, for each i, i’s reimbursements (bij)j 6=i,

is the cp-solution to the simple claims problem (N − i, biN , (`ij)j 6=i, (mi
j)j 6=i).

The next property compares the reimbursement ratios (R-ratios) of different firms.

Proportionality in R-ratios requires that if i reimburses twenty percent more per unit

than j a common creditor, then i reimburses twenty percent more per unit than j

any other common creditor. Formally

Proportionality in R-ratios: For each pair i and j, the reimbursement ratios to

their common creditors are proportional:

bik
`ik
/
bjk
`jk

=
bil
`il
/
bjl
`jl

for k and l such that (i, k), (j, k), (i, l) and (j, l) are in G. (17)

Proportionality in R-ratios thus ranks debtors with common creditors. It implies that

creditors with common debtors are also ranked, since (17) can be rewritten as
bik
`ik
/
bil
`il

=
bjk
`jk
/
bjl
`jl

for k and l such that (i, k), (j, k), (i, l), (j, l) are in G.

This reads: if k is reimbursed 20% more per unit than l by a common borrower i,

then k is reimbursed 20% more per unit than l by any of their common borrowers.

Proportionality in R-ratios differs from cp-consistency, because the latter bears

on the reimbursements made by a single firm whereas the former compares reim-

bursements by distinct firms. Clearly, the CbiP-solution satisfies cp-consistency and

Proportionality in R-ratios. The next proposition states the converse property for

problems satisfying an additional condition. A safe universal creditor at a solution

is a firm that is creditor to each other indebted firm and whose net worth is strictly

positive. Such a creditor surely exists in the following problems: (a) the network is

complete and
∑

i zi > 0, since then there is surely a firm whose net worth is positive

(b) there is a firm whose net external value covers its liabilities: say z1 ≥ `1N , and

who is creditor to each indebted firm: `1i > 0 for each i such that `Ni > 0; (b) holds in

a bipartite network when a long firm is creditor to every short one and has a positive

net external value.
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Proposition 6 Let π be in T ∗ and has a safe universal creditor. The CbiP-solution

solution is the unique liability-compatible and super-tight solution that satisfies cp-

consistency and proportionality in R-ratios.

The existence of a safe universal creditor is necessary to characterize the CbiP-

solution, as illustrated by the next example.

Example 3 Consider a bipartite network with 6 firms where 1 and 2 are short and

3, 4, 5, 6 are long: `13 = `14 = `23 = `24 = 1, `15 = `26 = 2 and all other liabilities

are null. Let z1 = z2 = 3, z3 = z4 = −1.7, z5 = z6 > 0. 5 and 6 are safe so that each

indebted firm, 1 or 2, has a safe creditor, but not a common one. The CbiP-solution20

is b13 = b23 = b14 = b24 = 1.7
2

and b15 = b26 = 1.3 with δ1 = δ2 = 1.3
2

, µ3 = µ4 = 1.7
1.3

,

µ5 = µ6 = 1.

Let us consider b defined by b13 = b14 = 0.9, b1,5 = 1.2 and b23 = b24 = 0.8, b2,6 =

1.4, all other values null. b satisfies all conditions stated in Proposition 6. It is

liability-compatible and super-tight. It satisfies Proportionality in R-ratios: 1 and 2’s

R-ratios to their common creditors 3 and 4 satisfy b13
`13
/ b23
`23

= b14
`14
/ b24
`24

= 9
8
. Finally b is

cp-consistent. Consider first 1’s reimbursements. Given the amount 0.8 reimbursed by

2, firms 3 and 4 must each receive at least 0.9 from 1; it follows that 1’s reimbursements

b13 = b14 = 0.9, b15 = 1.2 constitute the cp-solution supported by δ1 = 0.6 and rescue

indices µ1
3 = µ1

4 = 3
2
. Similarly, given the amount 0,9 reimbursed by 1 to firms 3 and

4, 2’s reimbursements b23 = b24 = 0.8, b26 = 1.4, constitute the cp-solution supported

by δ2 = 0.7 and rescue indices µ2
3 = µ2

4 = 8
7
. b is not the CbiP-solution because the

reimbursements by 1 and 2 are supported by different rescue indices.

A range of similar solutions satisfying all the conditions can be build: let b13 =

b14 = b, b15 = 3 − 2b and b23 = b24 = 1.7 − b, b26 = 2b − 0.4 where b is between 0.2

and 1.5. For these values, the payment by 2 to 6, 2b− 0.4, determines the constraints

faced by 1 on its reimbursements to 3 and 4; similarly the payment by 1 to 5, 3− 2b,

determines the constraints faced by 2 on its reimbursements to 3 and 4. As 5 and 6

have no common debtors, the payments they receive respectively from 1 and 2 are

20Surely µ5 = µ6 = 1 so that reimbursements made by i = 1, 2 satisfy: bi3 = δiµ3, bi4 = δiµ4,
bi5 = 2δi and bi6 = 2δi with a total δi(µ3 + µ4 + 2) summing to 3. This implies δ1 = δ2 = δ, hence
b13 = b23 = δµ3 and b14 = b24 = δµ4. Since W3 and W4 are null, we must have −1.7 + 2δµ3 = 0 and
−1.7 + 2δµ4 = 0. We thus obtain µ3 = µ4 = µ and δµ = 1.7/2. Plugging this value into 1 and 2 ’s
total reimbursement, δ(2µ+ 2) = 3, yields the stated solution.
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independent, explaining the indetermination in b. Assume instead that 5 and 6 have

each lent 3
4

to 1 and to 2. The solution b where each receives half of 3 − 2b from 1

and half of 2b − 0.4 from 2, keeping everything else unchanged, is cp-consistent. It

does not satisfy Proportionality in R-ratios except if 3 − 2b = 2b − 0.4, i.e. b = 1.7
2

corresponding to the CbiP-solution.

4.3 Bilaterally-bounded bi-proportional rule

This section aims at defining proportionality when solutions are constrained to be

bilaterally-bounded. We consider program P2, which has the same entropy objective

as P1 but requires solutions to be bilaterally-bounded instead of liability-compatible:

P2 : minimize f(b) over the tight and bilaterally-bounded solutions

where f is defined by (14). Let T ∗b denote the set of problems that satisfy each

inequality in (13) strictly. These problems are the ones admitting tight and bilaterally-

bounded solutions that are positive for each (i, j) in GD.

Proposition 7 Let π be in T ∗b . The solution to P2 is the unique super-tight solution

b such that, for scales (δi, µi), i = 1, · · · , n, all positive:

for each (i, j) : bij = min(δiµj, 1)`ij (18)

with µ satisfying the rescue conditions (16). Call b the constrained bounded bi-

proportional solution (CbbiP).

According to (18), reimbursements are described by a ’capped’ version of a matrix

bi-proportional to `: after multiplying i’s liabilities by δi and j’s claims by µj, the

transfer is capped to `ij if necessary. µj still satisfies the rescue condition according

to which its claims are scaled up only to avoid its bankruptcy.

Next proposition provides an axiomatization of the CbbiP-solution based on the

same ideas underlying cp-consistency and proportionality in R-ratios. Definitions are

adapted to account for the bilateral bounds. From Property 2, a bilaterally-bounded

and tight solution is fixed for the pairs not in GD: cp-consistency thus applies only

to its restriction on GD.

cp-consistency on GD: Bilaterally-bounded and tight solution b = (b|GD , `|N2−GD) is

cp-consistent on GD if b|GD is cp-consistent.
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Constrained proportionality in R-ratios accounts for the bilateral bounds by requiring

that the reimbursement ratios of two firms to their common creditors are proportional

except if this would violate the bilateral bounds:

Constrained proportionality in R-ratios: For each i, j, k and l such that (i, k),

(j, k), (i, l), and (j, l) are in G, bik
`ik
/
bjk
`jk

< bil
`il
/
bjl
`jl

implies bik = `ik or bjl = `jl.

Proposition 8 Let π be in T ∗b and has a safe universal creditor. The constrained

bounded bi-proportional solution is the unique bilaterally-bounded and super-tight so-

lution that satisfies cp-consistency on GD and constrained proportionality in R-ratios.

We illustrate the differences between the CbiP and CbbiP-solutions in Example 1.

Example 1-d In Example 1, one easily checks that the CbiP and CbbiP-solutions

coincide for z2 larger than 1
1+a

. All rescue indices are equal to 1 (even that of firm 1),

so that 1’s reimbursements are proportional to its liabilities: b12 = a
1+a

and b13 = a2

1+a

with δ1 = a
1+a

and 2 and 3 reimburse fully each of their liabilities, δ2 = δ3 = 1.

It follows that W2 = z2 − 1
1+a

. For z2 smaller than 1
1+a

, 2 must be repaid more in

proportion than 3 to avoid its bankruptcy so that 2’s rescue index is thus larger than

1. Hence 2’s worth must be null so that 2 receives in total (1+a)−z2. The CbiP and

CbbiP-solutions differ to achieve this total. At the CbbiP-solution, denoted by bb, 3’s

reimbursement to 2 is fixed equal to a, hence any decrease in z2 must be compensated

by an increase in 1’s reimbursement to 2, implying bb12 = 1−z2, hence bb13 = a−1+z2.

The solution exists provided bb13 and W3 are non-negative, i.e. for z2 ≥ 1 − a and

z2 ≥ 1
4
. At the CbiP-solution, 3’s reimbursement to 2 is not capped by liability a,

so that a decrease in z2 induces an increase in b32, which in turn implies that 1’s

reimbursement to 2 increases less than under the CbbiP-solution. Thus bb13 ≤ b13

and bb12 is larger and steeper than b12, as displayed in the left Figure 1, drawn for

a = 0.6. The CbiP-solution is defined for z2 ≥ 1
4

and the CbiP-ones for z2 ≥ 0.4.

Requiring bilateral-boundedness instead of liability-compatibility thus restricts the

possibility for tight solutions to exist.

Consider now 2 and 3’s worths at the CP, CbiP and CbbiP-solutions. The CP-

solution (computed in example 1-b) largely differs from the CbiP-solution because

it ignores the bilateral liabilities and claims, which much differ across the two firms.

This translates into very different worths as displayed in Figure 1 on the right. In
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Figure 1: Transfers and net worth a = 0.6

this example, the worths at the CbiP and CbbiP-solutions coincide, the solutions

differ only when 2’s worth is null, in which case W3 = z1 + z2 + z3 at any solution

since both W1 and W2 are null. This is specific to this example because transfers are

very constrained.21 To see this, let us modify the example by splitting firm 3 into

two firms, 3′ and 3′′, as follows by dividing equally 3’s net values and total liabilities

and claims but making firm 1 indebted to 3’ only and firm 2 indebted to 3′′ only:

z3′ = z3′′ = 3/8 and the liabilities matrix is

` =


0 1 a 0

a 0 0 1

1
2 a/2 0 0

1
2 a/2 0 0


Using the same argument as above, the CbiP-and CbbiP-solutions differ only when

W2 is null, which arises for z2 less than 1
1+a

. Assume this is the case. 3′′ is creditor

of non-distressed 2 only, hence is fully repaid at the CbbiP-solution, which yields

the worth W3′′ = z3′′ + 1 − 1+a
2

, or equal to 7
8
− a

2
, independently of he value of z2.

Consider now the CbiP-solution. Since 3′ and 3′′ are indebted to 2, both increase

their reimbursements to 2 above their liabilities when z2 decreases below 1
1+a

; this

implies that 3′′’s worth decreases with z2, hence is strictly lower than W3′′ (the reverse

inequality holds for 3′ since 3′ and 3′′ worths sum up to z2 − 1
4
).

Computation by hand is usually not possible. Algorithms for finding the matrix

21The smaller reimbursement from 1 to 2 at the CbbiP-solution is exactly compensated by a
larger reimbursement from 1 to 3, itself compensated by a larger reimbursement from 3 to 2, i.e.
bb12 − b12 = b13 − bb13 = b32 − bb32, leaving worths unchanged.
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with specified totals rows and columns bi-proportional to another one have been stud-

ied extensively (see e.g. Balinski and Demange 1989-b and Censor and Zenios 1997

survey). These algorithms, based on iteratively scaling the rows and the columns, can

be adapted to take into account the bankruptcy constraints and the bilateral bounds.

Performing simulations with 20 institutions and positive liabilities, convergence is fast

though we have not studied analytically the speed.

4.4 Concluding remarks

The paper examines how to apply the proportionality principle to the resolution of

cross-liabilities in a system, when resolution must in priority avoid default to external

creditors and, as far as possible, limit the discrepancy from exact reimbursements.

Two broad classes of constrained-proportional rules are considered: Coarse rules,

which do not take into account bilateral liabilities, in particular who has lent to dis-

tressed firms and which amount, and full rules which do and which specify bilateral

transfers related to the known bilateral liabilities. Coarse rules facilitate resolution

but may implement transfers that are illegal or not accepted if the bilateral liabilities

are known. Full rules instead account for this knowledge, which strongly affects bilat-

eral reimbursements: (constrained) proportionality requires a differential treatment

of creditors according to their health and to the need to rescue them. As a result, the

net worth of the firms depend not only on the composition of their claims but also of

their liabilities.

The analysis could be developed in several directions. So far, it considers positions

at a resolution stage, without addressing the interaction between the chosen resolution

rule and the incentives for a firm to lend and borrow or to enter into contracts at an

earlier stage. In practice, firms have incentives to screen debtors and extend loans

consequently since debtor’s reimbursements depend on their health (although only

partially due to limited liability). But with cross-liabilities, propagation of defaults

arises from borrowers to their creditors, then to the creditors’ creditors, and so on.

The incentives to screen creditors and borrow from safe ones thus should also be

enhanced to improve the robustness of the system: a rule that accounts for these

incentives is less prone to favor contagion. In this respect, when comparing the

constrained-proportional rules we have defined, the full ones, which specify larger
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reimbursements to rescued creditors, provide better incentives to screen creditors than

the coarse ones. Studying such incentives in general resolution rules, not necessarily

proportional ones, is worth further investigation.
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5 Proofs

Proof of Property 1 Let the nominal worth of each firm be positive. Define the

set A = {i, biN = `iN}. Reimbursement-boundedness implies Ac = {i, biN < `iN}.
Assume, by contradiction, Ac non-empty. Creditor’s priority implies that for each i

in Ac: Wi = 0, hence summing over Ac: WAc = 0. We find a contradiction with the

positivity of their nominal worth by showing

zAc + bN,Ac − bAc,N ≥ zAc + `N,Ac − `Ac,N (19)

The left hand side is WAc , which is null, and the right hand side is the sum of the

nominal worth of firms in Ac, which are positive: a contradiction. Let us show

(19). Transfers are balanced so that bN,Ac − bAc,N = bA,N − bN,A. By definition of A,

biN = `iN for i in A, which implies bA,N = `A,N ; by payment boundedness bN,A ≤ `N,A.

Hence bN,Ac − bAc,N ≥ `A,N − `N,A. Since `A,N − `N,A = `N,Ac − `Ac,N , this proves

bN,Ac−bAc,N ≥ `N,Ac−`Ac,N , hence (19). Since Ac is empty, biN = `iN for each i so that

bNN = `NN , which in turn implies bNi = `Ni for each i by payment-boundedness.
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Proof of Proposition 2. Let us write down program P :

P : min f(B) = a
∑
i

biN [log(
biN
`iN

)− 1] + (1− a)
∑
i

bNi[log(
bNi
`Ni

)− 1]

over B = (biN , bNi)i=1,··· ,n ≥ 0 satisfying the constraints :

for each i : biN − bNi ≤ zi, biN ≤ `iN and bNi ≤ `Ni (20)

and
∑
i

bNi =
∑
i

biN (21)

The inequalities (20) state for each firm the non-negativity of its worth and the

bounds on its reimbursements and payments. Equation (21) states the balancedness

condition. The objective function f of P is separable and strictly convex because

x logx is strictly convex, with a global minimum equal to -1 reached at x = 1. The

feasible set of P , defined by linear inequalities, has a nonempty interior for Π in C∗. It

follows that the solution is unique, characterized by the first order conditions on the

Lagrangian. We show that the unique solution to P coincides with the CP-solution.

This is obvious if no firm is distressed since then the CP-solution is the exact solution,

biN = `iN and bNi = `Ni for each i, which is also the unique solution to P because it

is feasible and produces the global minimum −`NN of f .

Assume now there are distressed firms: D 6= ∅. Denote respectively by αi, βi and

γi the non-negative Kuhn-Tucker multipliers associated to i’s constraints on net worth

and reimbursements and payments and by λ the multiplier on the balance condition.

The Lagrangian L is equal to

f(B) +
∑
i

[αi(biN − bNi − zi) + βi(biN − `iN) + γi(bNi − `Ni) + λ(bNi − biN)]

where αi ≥ 0, βi ≥ 0, γi ≥ 0. The first order and complementarity conditions are for

each i:

∂L
∂biN

= a log
biN
`iN

+ αi + βi − λ ≤ 0 with = if biN < `iN (22)

∂L
∂bNi

= (1− a) log
bNi
`Ni
− αi + γi + λ ≤ 0 with = if bNi < `Ni. (23)

αi(biN − bNi − zi) = 0, βi(biN − `iN) = 0, γi(bNi − `Ni) = 0 (24)

Claim 1: bNi < `Ni if and only if λ > αi, in which case bNi = exp(αi−λ
1−a )`Ni.
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Proof: Assume bNi = `Ni. (23) implies −αi + γi + λ ≤ 0 hence a fortiori −αi + λ ≤ 0

since γi ≥ 0. This proves the if part. Assume bNi < `Ni. Then γi = 0 by (24) and
∂L
∂bNi

= 0 by (23). These two conditions imply (1 − a) log bNi

`Ni
− αi + λ = 0, which

requires −αi +λ > 0 and yields the stated value for bNi. This proves the only if part.

Claim 2: λ > 0. Proof: By contradiction, assume λ = 0. Since the αi are non-

negative, Claim 1 implies that each i is fully repaid: bNi = `Ni, which in turn implies

that each firm fully reimburses its liabilities (since B is R&P -bounded and balanced,

we can use the same argument as at the end of the proof of Property 1). Hence the

(non-negative) net worth of each firm is equal to its nominal one: no firm is distressed,

the desired contradiction.

Claim 3: biN < `iN if and only if λ < αi, in which case biN = exp(−αi+λ
a

)`iN .

Proof: Assume biN < `iN . Then βi = 0 by the complementarity condition (24) and
∂L
∂biN

= 0 by (22). These two conditions imply a log biN
`iN

+ αi − λ = 0, which implies

αi − λ > 0 and the stated value for biN . This proves the only if part. To prove the

converse, assume biN = `iN . (22) writes αi + βi − λ ≤ 0 hence surely αi − λ ≤ 0.

Claim 4: B is super-tight. Furthermore, for i distressed: λ < αi and for i non-

distressed: λ ≥ αi and bNi = exp(αi−λ
1−a )`Ni.

Proof: Claims 1 and 3 prove that the following three cases are possible for i: (i)

bNi = `Ni, biN < `iN and λ < αi (ii) bNi = `Ni, biN = `iN and λ = αi (iii) bNi < `Ni,

biN = `iN and λ > αi. i’s nominal net worth, zi + `Ni − `iN , is negative in case (i),

null in case (ii) and positive in case (iii). A distressed firm is thus in case (i). It is

fully repaid and furthermore its net worth is null because αi > 0 (since λ is positive

by Claim 2): minimal rescue holds. The non-distressed firms fully reimburse their

liabilities since they are in case (ii) or (iii). This proves that B is super-tight. Finally,

in case (iii), bNi = exp(αi−λ
1−a )`Ni by Claim 1. The same expression holds in case (ii)

since λ = αi and bNi = `Ni.

End of the Proof: It remains to prove (7). From Claim 4, bNi = exp(αi−λ
1−a )`Ni for

i ∈ Dc. Thus bNi = δµi`Ni by defining δ = exp( −λ
1−a) and µi = exp( αi

1−a). The rescue

condition is met since αi ≥ 0 and αi > 0 only if Wi is null. This proves (7).

Proof of Proposition 3. Consider a rule F defined on C, that assigns a super-

tight solutions, satisfies proportional payments’ target. and worths’ monotony with

respect to z. Let Π0 be a problem in C with net external values z0 and distressed set

D. Defining zi = `iN − `Ni, we have z0i < zi for each i in D and z0i ≥ zi for i in Dc.
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Consider problems Π with a net external value zi in ∈ [z0i , zi] for each i in D, keeping

the net external values of the firms in Dc and the claims and liabilities ` unchanged.

For zD = zD, the distressed set is empty. Since F is exact, F (Π) = (`iN , `Ni)i=1,··· ,n

so that i’s net worth is null: Wi(Π) = 0.

Consider now problems with zi ∈ [z0i , zi[ for each i in D. All belong to C and

have the same distressed set D. We show that F assigns fixed payments to firms

in D. For zD < zD, i’s net worth is not greater than 0 by worth monotony with

respect to z, hence it is null: Wi(Π) = 0. Since i is fully repaid, bNi(Π) = `Ni, we

must have biN(Π) = zi + `Ni (which is non-negative under (5)): reimbursements by

firms D are constant. To determine the payments to the non-distressed firms, we

apply Proposition 1. The payments (bNi)i∈Dc to Dc sum to T = `N,Dc + zD and

are allocated according to a rule f on simple claims problems. We show that f

satisfies the assumptions of Lemma 1 below. First, Proportional payments’ target

is straightforward. Second, f is monotone with respect to the total T due to the

monotony of net worth levels with respect to z and the fact that the total T is

increasing in zD. Applying Lemma 1, the payments (bNi(Π))i∈Dc are given by the

cp-rule, hence satisfy (7).

Lemma 1 Let B be the set of simple claims problems, σ = (J, T, c,m), cJ ≤ T ,

satisfying mJ ≤ T . The cp-rule on B is the unique rule that satisfies Proportional

payment’s target and Monotony with respect to the estate: T < T ′ implies xj ≤ x′j

where x = F (J, T, c,m) and x′ = F (J, T ′, c,m).

Proof. Let σ = (J, T 0, c,m) be in B. We consider problems with values for T larger

than T 0, keeping c,m fixed. Define δj =
mj

cj
. δjcj is the minimum amount that j

must receive. Order the distinct values of the δj by decreasing order: δ(1) > δ(2) >

· · · > δ(k) · · · > δ(K).

Define T 1 = min(δ(1), 1)cJ . For T larger than T 1, the proportional allocation of T

to J satisfies the minimum constraints, so proportional payments target implies it is

the solution. In particular, at T = T 1, each j receives δ(1)cj; thus, xj = mj for each

j in J1 where J1 denotes the set of j for which δj = δ(1).

Let T ≤ T 1. By monotony with respect to the estate, the payments to J1 are

not larger than those received for T = T 1, which are already minimal. This implies

that for any T ≤ T 1 each j in J1 receives mj = δ(1)cj. It remains to find the

allocation to J − J1 of what is left T − δ(1)cJ1 . We use the same argument as above
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starting from T 1. Note first that at T = T 1 = δ(1)cJ1 , the amount allocated to

J − J1 is T 1 − δ(1)cJ1 = δ(1)cJ−J1 , which is strictly larger than δ(2)cJ−J1 by definition

of the δ(k). Thus, there is T 2 such that for T in the interval (T 2, T 1) the inequality

T−δ(1)cJ1 > δ(2)cJ−J1 holds (T 2 = δ(1)cJ1+δ(2)cJ−J1). For such T allocating T−δ(1)cJ1

to J − J1 in proportion of their claims is the solution. If T 0 ≥ T 2 we are done: the

solution is the cp-solution associated to δ = δ(2), µj = δ(1)/δ(2) for j in J1 and µj = 1

for j in J−J1. Otherwise, T 0 < T 2 . Repeating the argument from T 2 until reaching

T 0 shows that firms receive the cp-solution.

Proof of Proposition 4. For each of the four cases considered in the proposition, we

define a graph with lower and upper capacities for which the existence of a circulation

is equivalent to the existence of a solution satisfying the required constraints. Then

we use Hoffmann theorem, which characterizes the graphs for which a circulation

exists. Let d(e) and u(e) denote the lower and upper capacity of edge e. For a

nonempty subset X of the node set V , define the upper capacity of its outgoing edges

by u−(X) =
∑

e=(i,j),i∈X,j /∈X u(e) and lower capacity of its ingoing edges by d+(X) =∑
e=(i,j),i/∈X,j∈X d(e). Hoffmann theorem states: either there exists no circulation

satisfying the capacity constraints or

u−(X) ≥ d+(X) for any subset X. (25)

Let us start with bilaterally-bounded solutions, simpler to handle than liability-

compatible ones.

Conditions (13) Consider the directed network with node set V = {0} ∪ N =

{0, · · · , n} and the following edges and capacities:

(0, i) for i ∈ N with d(e) = zi, u(e) = zi

(i, 0) for i ∈ N with d(e) = 0, u(e) =∞
(i, j) for each i and j both in N with d(e) = 0 if (i, j) is in GD, and d(e) = `ij if

(i, j) is not in GD; u(e) = `ij.

It is easy to check that a circulation is associated to a tight and bilaterally-bounded

solution and conversely by setting bij equal to the flow on edge (i, j) (see the detailed

proof for proving (11) on liability-compatible solutions). Given X nonempty subset

of V , let us compute u−(X) and d+(X). Denote I = N ∩X. Consider two cases.

Case 1: 0 /∈ X. Surely I is non-empty (since X 6= ∅). The edge (i, 0) for i ∈ I
is outgoing from X. Since it has an infinite upper capacity, this implies u−(X) =∞
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hence (25) is satisfied.

Case 2: 0 ∈ X. The outgoing edges from 0 to V −X are of the form (0, i) for i /∈ I,

each with an upper-capacity equal to zi; the outgoing edges from a node inN are of the

form (i, j) where i ∈ I and j /∈ I, with an upper-capacity equal to `ij; we thus obtain

the total upper-capacity: u−(X) = zIc +`I,Ic . The lower capacity of the ingoing edges

are null except for the edges (i, j) in G −GD when i /∈ I and j ∈ I, each with a lower-

capacity equal to `ij. The edges (i, j) not in GD are those where i is not distressed

and those where i and j are distressed. We thus obtain d+(X) = `Ic∩Dc,I + `Ic∩D,I∩D.

Hoffman condition (25) thus writes zIc + `I,Ic ≥ `Ic∩Dc,I + `Ic∩D,I∩D. This inequality

must be satisfied for each subset I, hence denoting Ic by A this proves (13).

Conditions (12) It suffices to set the lower capacities of all edges (i, j) to 0.

Conditions (11). Consider the directed network with node set V = {0, · · · 3n} and

the following edges e:

(0, i), for i ∈ N and zi with abilities equal to zi: d(e) = zi, u(e) = zi

(i, 0) for i ∈ N with d(e) = 0, u(e) =∞
(i, i+ n) for i ∈ N with d(e) = 0 for i ∈ D, d(e) = `iN for i ∈ Dc and u(e) = `iN

(i+ n, j + 2n) if (i, j) is in G with d(e) = 0, u(e) =∞
(i+ 2n, i) for i ∈ N with d(e) = 0 for i ∈ Dc, d(e) = `Ni for i ∈ D and u(e) = `Ni.

Let us check that a circulation is associated to a tight and liability-compatible solution

and conversely. Let xe denote the flow on edge e. The circulation conditions write:

at i : zi + xi+2n,i = xi,i+n + xi,0 (26)

at i+ n : xi,i+n =
∑

j,(i,j)∈G

xi+n,j+2n (27)

at i+ 2n :
∑

j,(j,i)∈G xj+n,i+2n = xi+2n,i (28)

at 0 :
∑

i zi =
∑
i

xi,0 (29)

and the capacity constraints:

for each (i, j) ∈ G : xi+n,j+2n ≥ 0, for each i : xi0 ≥ 0, x0,i = zi (30)

for each i ∈ D : 0 ≤ xi,i+n ≤ `iN , for each i ∈ Dc : xi,i+n = `iN (31)

for each i ∈ Dc : 0 ≤ xi+2n,i ≤ `Ni, for each i ∈ D : xi+2n,i = `Ni (32)

We associate to circulation x the allocation b defined by bij equal to xi+n,j+2n for
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each (i, j) in G and 0 otherwise. b is non-negative and liability-compatible. From

equation (27), xi,i+n is equal to i’s total reimbursement biN and from (28), xi+2n,i is

equal to i’s total payment bNi. Hence equation (26) implies that xi,0 is i’s net worth,

which is non-negative by (30): b is a solution. Furthermore, the capacity constraints

(31) ensure that biN is bounded above by `iN with an equality for a non-distressed

firm, and (32) on (i + 2n, i) that bNi is bounded above by `Ni with an equality for

a distressed firm: b is tight. Conversely, a tight and liability-compatible solution

b easily defines a circulation. (Equation (29) simply states that the aggregate net

external value is equal to the aggregate net worth.)

Given X subset of V , let us compute u−(X) and d+(X). Denote I = {i ∈
N s.t. i ∈ X}, J = {i ∈ N s.t. i+ n ∈ X} and K = {i ∈ N s.t. i+ 2n ∈ X}.

Case 1: 0 ∈ X. Consider the outgoing edges

(i) from 0: they are of the form (0, i) for i /∈ I with upper-capacity zi;

(ii) from i ∈ X ∩ N , i.e. i ∈ I: the unique edge from i, (i, i + n), is outgoing if

i+ n /∈ X, i.e. i /∈ J . Their total upper-capacity is equal to `I∩Jc,N .

(iii) from j +n ∈ X, i.e. j ∈ J : they are of the form (j +n, k+ 2n) if (j, k) ∈ G and

k /∈ K; their upper-capacity is infinite

(iv) from k+2n ∈ X, i.e. k ∈ K: the unique edge from k+2n, (k+2n, k) is outgoing

if k /∈ X, that is if k /∈ I. Their upper-capacity is thus `N,K∩Ic

(25) is automatically satisfied for X with u−(X) = ∞. From (iii), this is the case if

there is an edge (j, k) in G with j ∈ J and k /∈ K, i.e. a creditor of J is not in K,

equivalently a debtor of Kc is in J . We thus now restrict to X such that no debtor

of Kc is in J : D(Kc) ⊂ J c. Summing over all outgoing edges, we obtain

u−(X) = zIc + `I∩Jc,N + `N,K∩Ic

To compute d+(X), note that the lower-capacity of an edge is null except for edge

(i, i+n) if i ∈ Dc with a lower capacity equal to `iN or edge (i+ 2n, i) if i ∈ D with a

lower capacity equal to `Ni. Since (i, i+ n) is an ingoing edge if i /∈ X and i+ n ∈ X
and (i+ 2n, i) is ingoing if i+ 2n /∈ X and i ∈ X, we obtain

d+(X) = `Dc∩Ic∩J,N + `N,D∩Kc∩I .
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So Hoffman’s condition (25) writes

zIc + `I∩Jc,N + `N,K∩Ic ≥ `Dc∩Ic∩J,N + `N,D∩Kc∩I where D(Kc) ⊂ J c. (33)

Case 2: 0 /∈ X. Since an edge (i, 0) has an infinite upper-capacity, we only need

consider X for which there is no such outgoing edge, i.e. I = ∅. The upper-capacity

of outgoing edges is determined as in Case 1 applied to I = ∅. The lower-capacity of

ingoing edges to X is also given by the same expression because the edges from 0 are

of the form (0, i) but no one is ingoing since no i is in X. The Hoffmann’s condition

thus writes as (33) for I = ∅.
Given K, condition (33) is the strongest one for J c the smallest one, i.e. D(Kc) =

J c, so (33) reduces to

zIc + `I∩D(Kc),N + `N,K∩Ic ≥ `Dc∩Ic∩D(Kc)c,N + `N,D∩Kc∩I .

Replacing Ic by A, Kc by B, we obtain (11).

Conditions (10). It suffices to set the lower capacities of all edges (i, i + n) and

(i+ 2n, i) to zero.

Proof of Proposition 5. A liability-compatible solution is of the form b = (b|G,0|N2−G),

hence the contributions of the transfers outside G to the entropy measure f are fixed.

The program P1 writes

P1 : min f(b|G) =
∑

(i,j)∈G bij

[
log
(
bij
`ij

)
− 1
]

over the (b|G,0|N2−G) that satisfy

for each i :
∑
j

bij −
∑
j

bji ≤ zi (34)

for each i :
∑
j

bij ≤ `iN with an equality for i /∈ D (35)

for each i :
∑
j

bji ≤ `Ni with an equality for i ∈ D. (36)

For a problem in T ∗, the conditions (11) are satisfied strictly, so that the feasible set

of P1 has a non-empty interior. The proof follows similar lines as that of Proposition 4

by showing that the solutions to convex program P1 coincide with the CbiP-solutions,

proving both the existence and uniqueness of a CbiP-solution. This is obvious if no

firm is distressed since then bij = `ij for each i, j is the unique solution to P1 and is
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the CbiP-solution. So we assume that there are distressed firms.

Consider the Lagrangian of P1. Denote by αi the Kuhn-Tucker multiplier to i’s

net worth constraint (34), by βi the one on i’s reimbursements (35), by γi the one on

i’s payments (36). To simplify the presentation, we assume each firm has a debtor and

a creditor (otherwise it suffices to drop the corresponding constraint and set βi = 0

or γi = 0 respectively). The Lagrangian writes:

L(b|G) = f(b|G) +
∑
i

[αi(biN − bNi − zi) + βi(biN − `iN) + γi(bNi − `Ni)].

The first order conditions with respect to bij for (i, j) ∈ G, the complementarity

conditions and the sign constraints on the multipliers are

for each (i, j) ∈ G :
∂L
∂bij

= log
bij
`ij

+ αi + βi − αj + γj = 0 (37)

for each i : αi ≥ 0 and αiWi = 0 (38)

for each i ∈ D : βi ≥ 0 and βi(biN − `iN) = 0 (39)

for each i /∈ D : γi ≥ 0 and γi(bNi − `Ni) = 0 (40)

These conditions are necessary and sufficient for an allocation satisfying the con-

straints of the program to solve P1. Taking exponential, (37) is equivalent to

For each (i, j) ∈ G : bij = δiµj`ij (41)

where for each i : δi = exp−(αi + βi) and µi = exp(αi − γi). (42)

Defining bij = 0 for (i, j) /∈ G, i.e. when `ij = 0, the relation (41) is valid for any

(i, j). This proves that b is bi-proportional to `. It remains to check that a multiplier

vector µ defined by (42) satisfies the rescue conditions (16). Lemma 2 asserts that

one can choose µ to have each of its component above 1 (This may not be true for

all multiplier vectors when they are not unique.). We prove that such a µ satisfies

the following properties.

(a) For i ∈ D, Wi = 0 and µi > 1.

As we have already seen, the non-negativity of Wi for i distressed at a payment-

bounded solution implies biN−`iN < 0. Because µj ≥ 1 for each j, biN = δi
∑

j µj`ij ≥
δi`iN hence we must have δi < 1. Furthermore, βi = 0 by the complementarity con-

dition (39) so that δi = exp−αi. We thus obtain αi > 0: Wi = 0 by the complemen-
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tarity condition (38).

(b) µi = 1 for each i with Wi > 0: (16) is satisfied

Let i with Wi > 0 (such i exists). i is surely not distressed from (a) and has

αi = 0 by (39). Thus µi = exp(−γi) by (42) where γi ≥ 0 by (40). Now γi > 0 would

imply µi < 1: this proves γi = 0 and µi = 1.

Finally, creditors’ priority is satisfied since, by (a), Wi = 0 for i ∈ D and each

i /∈ D reimburses fully. This proves that the solution to P1 is a CbiP-solution.

Conversely, let b be a CbiP-solution. It is feasible for P1. Since it is written as

(41), we show that the first order conditions (37) are satisfied by defining multipliers

satisfying (42) as follows:

For i /∈ D, set αi = lnµi , βi = − ln(δiµi) and γi = 0. (42) are satisfied:

µi = exp(αi − γi) since γi = 0 and δi = (exp−βi)/µi = exp−(αi + βi).

For i ∈ D set αi = − ln(δi), βi = 0 and γi = − ln(δiµi). (42) are satisfied:

δi = exp−αi = exp−(αi + βi) since βi = 0 and µi = (exp(−γi)/δi = exp(αi − γi).
Consider now the complementarity and signs conditions.

For i /∈ D, µi ≥ 1 implies αi ≥ 0. Furthermore, for i with Wi > 0, µi = 1 so that

αi = 0: the complementarity condition is satisfied. There is no sign condition on βi

and γi = 0 implies the complementarity condition on i’s net worth (38).

For i ∈ D, we have seen that necessarily each δi is not greater than 1, hence

αi ≥ 0. βi = 0 implies the complementarity condition on i’s reimbursement and there

is no sign condition on γi.

This proves that a CbiP-solution is a solution to P1, hence is unique.

Lemma 2 The multiplier µ can be chosen to have m = minµi at least equal to 1.

Proof of Lemma 2. Consider a multiplier µ with m strictly less than 1. Denote

I = {i, µi = m}. The proof follows from several claims.

Claim 1. bNi = `Ni for i ∈ I.

Proof: Let i ∈ I. If i ∈ D, bNi = `Ni by construction. If i /∈ D, µi = m < 1 holds

if αi < γi, hence γi > 0. The complementarity condition (40) then implies bNi = `Ni.

Claim 2. Let i ∈ I. For each debtor j of i: mδj = 1 and for each creditor k of j:

δjµk = 1.

Proof: Let i ∈ I. Let us first show that mδj ≤ 1 for each debtor j of i. Assume

by contradiction mδj > 1. Thus δj > 1, which implies αj + βj < 0 by the definition

(42) of δj. Hence surely βj < 0: j does not belong to D, because of the sign condition
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(39). Thus bjN = `jN , which writes
∑

k δjµk`jk =
∑

k `jk. Since `jN > 0 (because j is

indebted to i), surely δjµk ≤ 1 for a creditor k of j. Since we have assumed mδj > 1,

δjµk ≤ 1 implies m > µk: a contradiction.

We derive mδj = 1 for each debtor j of i: Since bij = δjµj`ij, it follows that

bij ≤ `ij for each j so that the identity bNi = `Ni (claim 1) can hold only if mδj = 1

for each debtor j of i, the first part of the claim.

We thus have that for each debtor j of i: δjµk = µk/m for any k, hence δjµk ≥ 1

by the definition of m. Since bjk = δjµk`jk, it follows that bjk ≥ `jk for each k. Hence

bjN ≥ `jN can hold only if bjk = `jk for each k, which implies .µk/m = 1 for any k

creditor of j: this ends the proof.

End of the proof: Denote by J the set of debtors of I, and by K the set of creditors

of J . From Claim 2, mδj = 1 for j in J and µk = m for each k in K, hence K is a

subset of I. The firms in I have lent only to elements in J who have only borrowed

from elements in I. Furthermore the products δjµi are all equal to 1. It follows

that we can change each µi for i ∈ I and each δj for j in J to 1 without affecting

the allocation. Let µ′ be the obtained multiplier vector. The minimum m′ of its

components is strictly larger than m and furthermore the number of components

strictly less than 1 is strictly lower than for µ. If m′ is equal to 1, we are done.

Otherwise m′ is lower than 1, and we can repeat the argument. Since the number of

elements with a multiplier strictly less than 1 decreases at each step, multipliers all

at least equal to 1 are reached in a finite number of steps.

Proof of Proposition 6. Let b a super-tight solution that satisfies cp-consistency

and proportionality in R-ratios. We show that b is bi-proportional to ` with scales

satisfying conditions (16).

Each total reimbursement is fixed: For a non-distressed firm, biN = `iN by

contagion-freeness, and for a distressed one,

Step 1. There are δi ≤ 1 and µij ≥ 1 such that for each (i, j) ∈ G : bij =

δiµ
i
j`ij with µij = 1 if Wj > 0. Proof: By cp-consistency, for each i there is δi ≤ 1

such that bij = max(δi`ij,m
i
j) where mi

j = max(bjN − zi − bN−i,j, 0). By definition of

mi
j, Wj = 0 iff bij = mi

j, in which case δi`ij ≤ mi
j. We can thus write bij = δiµ

i
j`ij

where µij ≥ 1 and µij = 1 if Wj > 0: this proves Step 1.

Step 2. µij is independent of each debtor i of j.

Proof: Consider j with Wj > 0: the claim holds since µij = 1 for each (i, j) ∈ G. In

particular, by assumption, there is a common safe creditor, say 1, for which W1 > 0:

40



µ1 = 1. Consider j with Wj = 0. R-ratio Let i and k debtors of j. Proportionality in

R-ratios applied to these pairs and to (i, 1) and (k, 1) (which are both in G) implies:

bij
`ij
/
bkj
`kj

=
bi1
`i1
/
bk1
`k1

Plugging the expression bij = δiµ
i
j`ij for each pair in G this equation writes

µij/µ
j
j = µi1/µ

k
1

Assuming a common safe creditor, say 1, for which µi1 = 1 whatever i, this proves

µij = µkj for each (i, j) and (k, j) in G.

End of the proof. Define µj to be equal to the common value of the µij for each

(i, j) in G. µj is at least equal to 1 since the µij are. We obtain bij = δiµj`ij for each

(j, j) in G with scales satisfying the condition (16). For (i, j) not in G, `ij = 0; bij = 0

since b is liability-compatible. Thus bij = δiµj`ij holds for any pair.

Proof of Proposition 7. From Property 2 a tight and bilaterally-bounded solution

is of the form b = (b|GD , `|N2−GD), with fixed contributions of the transfers outside GD
to the entropy measure f . The program P2 is thus equivalent to

P2 : minimize f(b|GD) =
∑

(i,j)∈GD bij[log(
bij
`ij

)−1] over b|GD s.t. b = (b|GD , `|N2−GD) satisfy

for each i :
∑

j bij −
∑

j bji ≤ zi (43)

for each (i, j) ∈ GD : bij ≤ `ij (44)

A problem in T ∗b has all conditions (13) satisfied strictly, so the feasible set of P2 has a

non-empty relative interior. The proof follows similar lines as that of Proposition 5 by

using the Lagrangean to show that the solutions to convex program P2 coincide with

the CbbiP-solutions, proving both the existence and uniqueness of a CbbiP-solution.

Denote by αi the Kuhn-Tucker multiplier to i’s net worth constraint (43), by βij

the one on i’s reimbursement to j (44) for (i, j) ∈ GD. The Lagrangian writes:

L(b|GD) = f(b|GD) +
∑
i

[αi(biN − bNi − zi) +
∑

(i,j)∈GD

βij(bij − `ij).
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The first order conditions and the complementarity conditions are

For each (i, j) ∈ GD : ∂L
∂bij

= log
bij
`ij

+ αi + βij − αj ≤ 0 with = if bij < `ij (45)

for each i : αi ≥ 0 and αi(zi + bNi − biN) = 0 (46)

for each i, j ∈ GD : βij ≥ 0 and βij(bij − `ij) = 0 (47)

Let us first show that the solution to P2 is super-tight. It suffices to show that it

satisfies minimal rescue. By contradiction, assume Wi > 0 for i ∈ D. Then αi = 0

by the complementarity condition (46). We prove that bij = `ij for each j. For j in

D, this holds by construction. For j not in D, the pair (i, j) is in GD. bij < `ij would

imply βij = 0 (from 47) hence 45) writes log
bij
`ij

= αj, which contradicts bij < `ij since

αj ≥ 0. This proves that distressed i reimburses fully its creditors: its net worth must

be strictly negative, a contradiction.

To show that b is the CbbiP-solution, from Lemma 3, it suffices to define δi for i

in D and µj for j not in D such that (18) is satisfied on GD and the rescue conditions

(16) are satisfied on Dc.. Set for i in D: δi = exp−αi and for j in Dc: µj = expαj.

b|GD satisfies (18). From (45) we obtain

for each i, j ∈ GD : bij = exp−(βij)δiµj`ij. (48)

There are two cases. Case 1: βij > 0. In that case, bij = `ij by the complementarity

condition (47) and exp−(βij) < 1. Thus (48) implies `ij < δiµj`ij, hence `ij =

min(δiµj, 1)`ij, which proves (18). Case 2: βij = 0. In that case, bij = δiµj`ij. Surely

δiµj ≤ 1 since bij ≤ `ij by (44). Hence bij = min(δiµj, 1)`ij: again (18) is satisfied.

µj satisfies (16) for j in Dc. Since µj = expαj and αj ≥ 0 obviously each µj is

larger than 1 and µj > 1 only if αj > 0 in which case Wj = 0 by the complementarity

condition (46): this proves (16).

The solution to P2 thus satisfies all the constraints required on a CbbiP-solution.

This proves the existence of a CbbiP-solution. Conversely, a CbbiP-solution solves

P2: it belongs to the feasible set of P2 and it is easy to define the multipliers α and

β from δ and µ so that the first order conditions and complementarity conditions of

the Lagrangian are met. This proves the uniqueness of a CbbiP-solution.

Lemma 3 Let b be bilaterally-bounded and super-tight. Let δi for i in D and µj for

j not in D such that (18) is satisfied on GD and the rescue condition (16) is satisfied
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on Dc. Then defining δi = 1 for i not in D and µj = maxk∈D 1/δk, (18) is satisfied

for any pair and the rescue condition (16) for any j.

Proof The definition of µj for j ∈ D implies µjis larger than 1 since surely δi ≤
1 for i in D. This is compatible with (16) since b satisfies minimal rescue hence

Wj = 0. Consider now (18) for a pair (i, j) not in GD. Either i non-distressed (hence

δi = 1) or both i and j distressed, hence µj ≥ 1/δi. It straightforwardly follows that

for each (i, j) not in GD: δiµj ≥ 1, hence `ij = min(δiµj, 1)`ij. Since bij = `ij this

proves (18).

Proof of Proposition 8. Let b be bilaterally-bounded and super-tight and satisfy

cp-consistency and constrained proportional R-ratios. We show that b is the (unique)

CbbiP-solution, following the same lines as in the proof of Proposition 6. In particular,

Since cp-consistency holds on GD, step 1 is straightforwardly changed into:

Step 1. There are δi for i ∈ D and µij ≥ 1 for j /∈ D such that for each (i, j) ∈ GD :

bij = δiµ
i
j`ij with µij = 1 if Wj > 0. Surely δi < 1.

Step 2. (18) is satisfied on GD: for each (i, j) ∈ GD : bij = min(δiµj, 1)`ij.

Proof. Let j in Dc with Wj > 0. From Step 1, µij = 1 for each (i, j) ∈ GD hence

bij = δi`ij. Define µj = 1. Since δi ≤ 1, we have min(δiµj, 1) = δi: (18) is satisfied.

In particular it is satisfied for a common safe creditor, say 1.

Let j in Dc with Wj = 0. Constrained Proportionality in R-ratios implies that

for each pair (i, j) and (k, j) both in GD:
bij
`ij
/
bkj
`kj

< bi1
`i1
/ bkl
`kl

implies bij = `ij. Plugging

the expression bij = δiµ
i
j`ij and using µi1 = µk1 = 1, the condition writes:

µij < µkj implies bij = `ij

Define I = {k s.t. bkj < `kj}. The above condition implies that the values of µkj are

equal on I and furthermore not less than any µij. Setting µj equal to the maximum of

the µij over all i we have bkj = δkµj`kj with δkµj < 1 for each k ∈ I: (18) is satisfied.

For i not in I, bij = `ij, hence δiµ
i
j = 1. Since µij ≤ µj, we obtain δiµj ≥ 1, which

gives bij = min(δiµj, 1)`ij. This proves that conditions (18) are satisfied on GD. It is

obvious that (16) is satisfied. Using Lemma 3, this ends the proof.
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