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 SUMMARY
 It is argued that univariate long memory estimates based on ex post data tend to underestimate the persistence
 of ex ante variables (and, hence, that of the ex post variables themselves) because of the presence of
 unanticipated shocks whose short-run volatility masks the degree of long-range dependence in the data.
 Empirical estimates of long-range dependence in the Fisher equation are shown to manifest this problem and
 lead to an apparent imbalance in the memory characteristics of the variables in the Fisher equation. Evidence
 in support of this typical underestimation is provided by results obtained with inflation forecast survey data
 and by direct calculation of the finite sample biases.

 To address the problem of bias, the paper introduces a bivariate exact Whittle (BEW) estimator that
 explicitly allows for the presence of short memory noise in the data. The new procedure enhances the
 empirical capacity to separate low-frequency behaviour from high-frequency fluctuations, and it produces
 estimates of long-range dependence that are much less biased when there is noise contaminated data.
 Empirical estimates from the BEW method suggest that the three Fisher variables are integrated of the
 same order, with memory parameter in the range (0.75, 1). Since the integration orders are balanced, the ex
 ante real rate has the same degree of persistence as expected inflation, thereby furnishing evidence against the
 existence of a (fractional) cointegrating relation among the Fisher variables and, correspondingly, showing
 little support for a long-run form of Fisher hypothesis. Copyright ? 2004 John Wiley & Sons, Ltd.

 1. INTRODUCTION

 This study investigates the long-run properties of three ex ante Fisher variables including the ex
 ante real rate, expected inflation and the nominal interest rate. The properties are of intrinsic
 interest because these variables play a crucial role in determining investment, savings, and indeed
 virtually all intertemporal decisions. Since both the ex ante real interest rate and expected inflation
 are not directly observable, it is not a straightforward matter to study their long-run behaviour. To
 circumvent the difficulty, most empirical studies use ex post variables as proxies for the ex ante
 variables. In particular, actual inflation observed ex post is used as a proxy for expected inflation,
 and the implied ex post real rate, defined as the difference between the nominal interest rate and
 actual inflation according to the ex post Fisher equation, as a proxy for the ex ante real rate. This
 practice often leads to controversial results. For example, Rose (1988) concluded that the ex ante
 real rate is unit root nonstationary by showing that the nominal rate is a unit root process while
 inflation and inflation forecasting errors are 1(0) stationary. In contrast, Mishkin (1992, 1995)
 found support for an 1(0) ex ante real rate by rejecting the null of a unit root in the ex post real
 rate. Recently, Phillips (1998) showed that the three ex post Fisher components are fractionally
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 870 Y. SUN AND P. C. B. PHILLIPS

 integrated, and that the nominal interest rate is more persistent than both the real interest rate and
 inflation, an outcome that is strikingly at odds with the ex post Fisher equation. According to the
 ex post Fisher equation it = nt+\ + rr+1, where 7r,+i and rt+\ are the realized inflation rate and
 the ex post real interest rate, respectively, the degree of persistence of it is necessarily the same
 as that of the dominant component of 7it+\ and rt+\.

 This paper attempts to reconcile the findings of Rose (1988) and Mishkin (1992, 1995), and
 resolve the empirical incompatibility found in Phillips (1998). All three studies estimated or
 inferred the integration orders of the Fisher variables based on the ex post Fisher equation. We
 argue here that empirical results obtained in this way can be misleading because the ex post Fisher
 equation appears unbalanced for the reasons explained below.

 First, the timing of the three components is different. The nominal interest rate can be regarded
 as being set in advance. For example, the widely used three-month Treasury Bill rates are set
 every Monday and are 'expected' to be relevant over the next three months. Put this way, the
 nominal interest rate can be regarded as an observable ex ante variable. Therefore, when the
 Fisher equation is written in the form it = rt+\ -\-nt+\, it expresses an ex ante variable as the
 sum of two ex post variables. More formally, if Tt is a filtration representing information at
 time t, it is adapted to the filtration Tt while 7tt+\ and, in consequence, rt+\ are adapted to the
 filtration Tt+\- Interpreted in this way, the Fisher equation implies that the sum of two Tt+\
 measurable random variables is ^-measurable, which at first seems puzzling. But the Fisher
 equation is actually an accounting identity that defines the ex post real rate rt+\. The forces that
 really determine the nominal interest rate it are the expected real rate and expected inflation
 formed at time t, i.e. it ? Etrt+\ + Et7rt+i, where Et is the expectation operator conditional on
 the information Tt> By adding and subtracting the Tt+\-measurable forecasting errors et+\, we get
 it = (Etrt+\ ? et+\) + (Et7tt+\ + et+\) = rt+\ + 7Tt+\.

 Second, the short-run dynamics of the three components are different. The nominal interest rate
 is often less volatile than inflation and the ex post real rate in the short run. The nominal rate
 is a rate that is expected to prevail during some period and is not affected, by definition, by the
 unexpected shocks that arrive during that period. On the other hand, the inflation rate and ex post
 real rate are rates that are realized during that period and thus carry the effects of the unexpected
 shocks over that period.

 Third, it can be misleading to infer the integrating order of the real rate in small samples from
 the ex post Fisher equation as is done in Rose (1988). Due to the presence of possibly large
 forecasting errors, unit root tests may falsely reject the null that expected inflation contains a unit
 root, if ex post inflation is used as a proxy for expected inflation. The false rejection, coupled with
 evidence that the nominal rate contains a unit root, can lead to the false conclusion that the ex ante

 real rate is an 7(1) process. Again, because of forecasting errors, unit root tests are likely to reject
 the null of a unit root in the ex ante real rate, if the ex post real rate is used as a proxy for the
 ex ante real rate. This leads to the possibly false conclusion reached by some earlier researchers
 (e.g., Mishkin, 1992, 1995) that the ex ante real rate is an 7(0) process.

 The empirical incompatibility found in Phillips (1998) is direct evidence of the apparent
 imbalance of the ex post Fisher equation. Suppose the forecasting errors are stationary and weakly
 dependent, and expected inflation Et7zt+\ follows a fractional process. Then actual inflation follows
 a perturbed fractional process in the sense that it is the sum of a fractional process and weakly
 dependent noise. From a statistical perspective, a perturbed fractional process is a long memory
 process with the same degree of persistence as the original fractional process. However, it can be
 difficult to estimate the fractional integration parameter even in large samples, especially when

 Copyright ? 2004 John Wiley & Sons, Ltd. J. Appl. Econ. 19: 869-886 (2004)
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 UNDERSTANDING THE FISHER EQUATION 871

 the perturbation is volatile because the long memory component gets buried in a lot of short
 memory noise. In these circumstances, the widely used log-periodogram (LP) estimator (Geweke
 and Porter-Hudak, 1983) and local Whittle estimator (Robinson, 1995) suffer substantial downward
 bias. This bias is large enough to account for the empirical incompatibility that Phillips discovered
 in the ex post Fisher relation.

 Using a new approach, we find evidence that the three Fisher variables are indeed integrated of
 the same order and are fractionally nonstationary. The evidence presented here takes three forms.
 First, one cause of the bias is that ex post rather than ex ante variables are observed. If good
 proxies for the ex ante variables were available, we could perform estimation with these proxies
 and presumably avoid or at least reduce bias. Of course, the ex post variables can themselves be
 regarded as proxies for the ex ante variables. However, unexpected subsequent shocks make the
 ex post variables more volatile than their ex ante counterparts, so these variables may not be such
 good proxies because of their contamination with short memory effects. This point is especially
 important because it is the long-run properties of the variables that are the focus of interest in
 the Fisher relation. In search of better proxies than ex post realizations, we employ the inflation
 forecast from the Survey of Professional Forecasters (for details of the survey, see Croushore,
 1993) as a proxy for expected inflation, and we use the implied real rate forecast as a proxy for
 the ex ante real rate. Using these variables, we find that the estimated orders of integration are
 larger than those based on the realized ex post series. This finding corroborates the bias argument
 and indicates that the true ex ante variables are more persistent than they appear to be from ex
 post realizations.

 Second, we calculate the bias effects explicitly using asymptotic expressions. Asymptotic theory
 shows that the asymptotic bias of the LP estimator depends on the ratio of the long-run variance of
 the forecasting errors and that of the innovations that drive the inflation forecasts. Using inflation
 and the inflation forecasts, we evaluate the ratio and calculate the asymptotic bias of the LP
 estimator. The evidence points to a substantial asymptotic bias and these findings are supported
 by simulation evidence from finite samples. Furthermore, we investigate the bias of the exact
 Whittle (EW) estimator of Shimotsu and Phillips (2002a), which is more efficient and more
 widely applicable (to stationary and nonstationary fractional series) than the LP estimator. The
 EW estimator produces the same empirical incompatibility as the LP estimator. Simulations show
 that the EW estimator also has a substantial downward bias.

 Third, we introduce a bivariate exact Whittle (BEW) estimator that accounts for the possible
 presence of additive perturbations in the data. The estimator resembles the bivariate Whittle
 estimator of Lobato (1999) but involves an additional term in the approximation of the spectral
 density matrix and uses an exact version of the local Whittle likelihood (see Phillips, 1999;
 Shimotsu and Phillips, 2002a). Simulations show that the BEW estimator has a significantly smaller
 bias than the LP and EW estimators. Applying the BEW estimator to the ex post data, we find
 the BEW estimates are significantly higher than LP and EW estimates, which again lends strong
 support for the small sample bias argument. Moreover, the empirical estimates suggest that the three
 Fisher variables are integrated of the same order, with memory parameter in the range (0.75,1).

 The BEW estimator also provides a framework for testing the equality of the integration orders
 of the three Fisher components. Applying this approach, we find that we cannot reject the null
 that inflation and the real rate are integrated of the same order. Since the integration orders are
 balanced, the ex ante real rate has the same degree of persistence as expected inflation, thereby
 furnishing evidence against the existence of a (fractional) cointegrating relation among the Fisher
 variables and correspondingly, showing little support for a long-run form of Fisher hypothesis.

 Copyright ? 2004 John Wiley & Sons, Ltd. /. Appl Econ. 19: 869-886 (2004)
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 The rest of the paper is organized as follows. Section 2 gives LP and EW estimates of the
 fractional integration parameters using ex post data and confirms the empirical incompatibility
 described above. Section 3 presents evidence from the Survey of Professional Forecasters to show
 that the ex post variables are more volatile than the ex ante variables, and that the LP and EW
 estimates based on the ex post data are substantially downward biased. Section 4 introduces the
 BEW estimator and provides further evidence that the LP and EW estimates are biased downward.
 This section also develops and implements a test of the equality of long memory in the Fisher
 components. Section 5 concludes.

 2. MEMORY ESTIMATION AND THE APPARENT EMPIRICAL INCOMPATIBILITY OF
 THE FISHER COMPONENTS

 We calculate three-month inflation rates using the US monthly CPI (all commodities, with no
 adjustment) and take the US three-month Treasury Bill rate as the nominal interest rate.1 Instead
 of using monthly overlapping data as in Phillips (1998), we compute and employ quarterly non
 overlapping data in order to make them conform to the data from the Survey of Professional
 Forecasters. In addition, the use of quarterly data avoids the possibly spurious serial correlation
 resulting from the horizon of the variables being longer than the observation interval. No variables
 are seasonally adjusted. Since low frequency (specifically, frequency zero) behaviour is the focus
 of interest, seasonality does not play an important role. The timing of the data is as follows:
 data are collected in January, April, July and October each year. A January observation of the
 three-month inflation rate is calculated from the January to April CPI data. A January interest
 rate observation uses the end of January three-month TB rate. The timing of the TB rate and
 the inflation rate is slightly different, as the monthly CPI is based on the prices that are taken
 throughout a month, instead of at the end of a month. Given data availability, it is not possible to

 match the timing of these two variables precisely.
 Using quarterly data in the US over the period 1934:1-1999:4, we employ both the exact

 Whittle and the log-periodogram approaches to estimate the fractional differencing parameters. The
 advantages of the exact local Whittle estimator are its robustness to nonstationarity, its consistency
 and asymptotic normality for all values of d. However, its properties are unknown in the presence
 of additive short memory disturbances. The log-periodogram estimator is easy to implement and
 has been shown to be consistent and asymptotic normal (Sun and Phillips, 2003) for both fractional
 processes and perturbed fractional processes. However, the LP estimator is inconsistent when d > 1
 (Kim and Phillips, 1999). In this case, two popular approaches are to difference or taper the data
 (Velasco, 1999a,b; Lobato and Velasco, 2000).

 For a given time series {xt, t = 1, 2,..., n}, tapering produces a new time series of the form
 {htxt} where a taper {ht} is used to weight the original observations. A popular choice of taper is
 the Hanning taper defined by ht = 1/2[1 ? cos(2nt/n)]. Obviously, any form of tapering distorts
 the trajectory of the original time series, and this in turn leads to an inflation of the asymptotic
 variance of estimates obtained from the tapered series. We therefore adopt the first option and
 difference the data using the filter (1 ? L)1/2. This half-difference filter has been used in earlier
 research, e.g. by Gil-Alana and Robinson (1997). To apply a fractional filter such as (1 ? L)1/2

 1 CPI: Bureau of Labor Statistics, Monthly Labor Review. Code: CUUROOOOSA0. http://www.bls.gov/data/home.htm.
 Three-month TVeasury Bill rate: Board of Governors of the Federal Reserve System, Federal Reserve Bulletin. Code:
 TB3MS. http://research.stlouisfed.org/fred/.

 Copyright ? 2004 John Wiley & Sons, Ltd. /. Appl Econ. 19: 869-886 (2004)
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 to a given time series of fixed length, we assume that the prehistorical values of the time series
 are zero (see the footnote below). Since the choice of the fractional filter (1 ? L)1/2 is somewhat
 arbitrary, it is worthwhile using alternate filters to check robustness of the results. In the empirical
 work reported below, similar estimates to those reported were obtained after applying the filters
 (1 - L)? 75 and (1 - L).

 2.1. EW and LP Estimation

 The exact Whittle estimator was proposed in Phillips (1999) and its asymptotic theory was
 developed in Shimotsu and Phillips (2002a). For a fractional process defined as2

 xt = (1 - L)~dwt = Y V(d + k) wt-k (1)

 where {wt} is a weakly dependent process with continuous spectral density, exact Whit
 tle estimation of the memory parameter d involves maximizing the following Whittle log
 likelihood function:

 1 m / 1 \
 Qm(G, <*) = -?) (los GA7^ + q1^w(*y)) (2> 7=1

 where G is a positive constant, 7Ad(jc)(X;) is the periodogram of (1 ?L)dxt with the fractional
 filter (1 ? L)d defined in the same way as in Robinson (1994) and Phillips (1999), and m is a
 bandwidth parameter satisfying m/n + 1/m ? 0 so that the band {Xj = 2nj/n, j = 1, 2,..., m}
 concentrates on the zero frequency as the sample size n ? oo.

 Shimotsu and Phillips (2002a) show that the exact Whittle estimator (Gew> dEw) is consistent
 and that dEw has the following limiting distribution as n -> oo:

 yfc(dEw ~ d) -^ N(0, 1/4) (3)

 for all values of d. The robustness of the asymptotic properties of dEw is especially appealing for
 practical work when the domain of the true order of fractional integration is controversial. The
 EW estimate also provides guidance on the order of the fractional difference that can render the
 data stationary.

 LP regression involves linear least squares over the same frequency band (Xj : j = 1, 2,..., m)
 leading to the regression equation

 logIAi{x)(kj) = a - pin |1 - expO'X;)|2 + error (4)

 for some d corresponding to preliminary fractional differencing of the data. The LP estimate dLP
 of d is then obtained by adding d back into the estimate p, giving p + d. In our empirical work

 2 Two main approaches have been used in the literature to define a fractional process xt. The first, which is adopted in
 Hosking (1981), among others, defines a stationary fractional process as an infinite order moving average of innovations:
 xt = YlkLo F(d + k)/r(d)F(k + \)wt-k and defines a nonstationary 1(d) process as the partial sum of an I(d ? 1) process
 (Hurvich and Ray, 1995; Velasco, 1999a,b). The second, which is used in Robinson (1994) and Phillips (1999), truncates
 the fractional difference filter and defines xt = _Cjfc__o F(d + k)/T(d)r(k + l)wt-k for all values of d. For a more detailed
 discussion of the definitions and their implications, see Shimotsu and Phillips (2002b).

 Copyright ? 2004 John Wiley & Sons, Ltd. J. Appl. Econ. 19: 869-886 (2004)
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 874 Y. SUN AND P. C. B. PHILLIPS

 reported below, we take d to be 0.5, 0.75 and 1, and find that the estimates for different d match
 fairly closely. We therefore only report the case for d = 0.5. Sun and Phillips (2003) show that
 the LP estimator is consistent and has the following limiting distribution even in the presence of
 perturbations:

 Jm(dLp - d) ?d-+ N(0, tt2/24) (5)

 2.2. Empirical Memory Estimates for the Fisher Components

 Since the EW and LP estimates depend on the choice of bandwidth m, several different bandwidths
 were used. Figures 1 and 2 present the empirical estimates of (dt, dn, dr), the long memory
 parameters for the three ex post Fisher components, using the LP estimator and the EW estimator,
 respectively. Both the EW estimates and the LP estimates appear fairly robust to the choice of
 m. A salient feature of both figures is that the 95% confidence bands for dt and dn do not
 overlap each other while the confidence bands for dr and dn are almost indistinguishable. The
 EW and LP estimates suggest that dt > dn and dr = dn, a configuration that is incompatible with
 the ex post Fisher equation. For, in a model where the three fractionally integrated variables
 yt =I(dy),xt = I(dx) and zt=l(dz) satisfy the linear relationship yt=xt-zt, the long-run
 behaviour of yt is characterized by the dominant component of xt and zt, e.g., if dx > dz, then
 dy = dx. In the present case, rt+\ = i, - 717+1. So, if dt > dn, then dr > dn. This conclusion is
 clearly at odds with the empirical estimates.

 The estimates obtained here are similar to those reported in Phillips (1998) where the empirical
 incompatibility of the long-run behaviour of the Fisher components was discovered. Phillips used
 the local Whittle estimator (Robinson, 1995) that was originally proposed for stationary fractional
 processes, extending it to the nonstationary case J (1/2, 1]. So, local Whittle, exact local Whittle
 and LP estimators all reveal the same empirical incompatibility.

 To check the robustness of the results, we re-estimated the fractional parameters using the data
 after World War II. In doing so, it is of particular interest to see whether the extensive controls

 1.4 r--,-,-,-,-1-,-.

 ..al- ^__^"""~""~"''' ^^ H

 0.8T _***"* ~~ ~" ^ "" ""- 1

 0.6 W' ~ " " .-: .-r.-.?-. .- - ' --._,, ^ v >Jp..-il '--' '-' \

 0.4 \J* ^ ^^^ZZS^az^s^'*?*-ji-'is??x^,^*r~" " J

 I %->' _ I
 K I - - Long memory: nominal rate I I
 0 r -95% confidence band: nominal rate i
 -a- Long memory: realized inflation rate
 ? 95% confidence band: realized inflation rate I

 -0.2 V ?a? Long memory: ex post real rate H
 I. 95% confidence band: ex post real rate I

 _o#4l-1-1-1-1-1-1-1 20 30 40 50 60 70 80
 m

 Figure 1. Log-periodogram estimates of d (sample size = 264)
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 Figure 2. Exact-local Whittle estimates of d (sample size = 264)

 on prices and nominal rates during the war period affect our results. Using the subsample ranging
 from 1948 :1 to 1999:4, we find the subsample LP and EW estimates are close to those based on
 the full sample and that the empirical incompatibility remains.

 3. UNDERSTANDING THE EMPIRICAL IMBALANCE IN THE FISHER EQUATION

 The estimates reported in the previous section are all based on the ex post time series,3 which
 are either directly observable or indirectly available from the ex post Fisher equation. We argue
 that the empirical estimates based on the ex post data underestimate the true degree of persistence
 of the underlying ex ante variables and hence that of the ex post variables themselves. Since the
 long-run properties of the underlying variables are the focus of interest, the ex post variables can
 be regarded as proper proxies for the ex ante variables. On theoretical grounds, this will be true
 as long as the forecasting errors are stationary and weakly dependent (i.e., have short memory).
 However, when the unexpected shocks are so large that the forecasting errors have greater variation
 than the innovations that drive the ex ante variables, the actual variables observed ex post may
 appear to be less persistent than they really are because the slowly moving nature of the persistent
 component is buried in the volatile short-run fluctuations. This interpretation gains support from
 the evidence presented below from inflation forecasts.

 3.1. Results from Inflation Forecasts

 Under the assumption of rational expectations, the realized inflation rate differs from the expected
 inflation rate by an unexpected shock, i.e.

 7T,+i = Ket + et+x (6)

 3 To avoid confusion, we should note that we sometimes refer to the nominal rate as an ex post variable because it has
 ex ante features and is observable ex post.

 Copyright ? 2004 John Wiley & Sons, Ltd. /. Appl Econ. 19: 869-886 (2004)
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 876 Y. SUN AND P. C. B. PHILLIPS

 where the unexpected shock (forecasting error) et+\ is a martingale difference process. If we further
 assume that {net} is a fractional process that is uncorrelated with {et}, then the realized inflation
 rate is a fractional process with uncorrelated additive disturbances. Such a process is a special
 case of the perturbed fractional process studied in Sun and Phillips (2003). A general perturbed
 fractional process allows the additive disturbances to be any stationary and weakly dependent
 process. The uncorrelatedness between the forecasting errors and the innovations that drive the
 inflation forecast seems plausible. This is supported by a simple calculation of cross-correlation
 coefficients using the data on inflation and inflation forecasts.

 The strong dependence in the inflation expectations data is consistent with Fisher's original
 study (Fisher, 1930). Fisher found that the duration of the expectation formation process was
 long and that realized inflation was quite volatile. He constructed inflation expectations series by
 taking moving averages of realized inflation over as many as 15 to 40 years. Here we employ

 modern techniques to model the same phenomenon, using a persistent (long memory) process to
 model expected inflation and additive disturbances (representing unexpected shocks) to allow for
 the greater volatility of realized inflation. When there is large variation in the unexpected shock
 component, realized inflation appears less persistent because the slow moving component is less
 evident in the time series. Therefore, estimates of strong dependence tend to be downward biased
 with the bias depending on the relative variation in the forecasts and the unexpected shocks, as
 shown by Sun and Phillips (2003).

 To compare variation, we need to obtain the expected inflation rates. Prior studies of this issue
 can be grouped into two categories. One models expectation formation explicitly and then estimates
 expected inflation from the observed time series of realized (expost) values (e.g., Hamilton, 1985).
 The other uses survey data on inflation forecasts or inflation expectations. Several surveys are
 available and among these the Survey of Professional Forecasters is the oldest quarterly survey
 of macroeconomic forecasts in the United States.4 The survey respondents include a diverse
 group of forecasters who share one thing in common: they forecast as part of their current jobs.
 Hence it is reasonable to believe that their forecasts represent an overview of expectations about
 macroeconomic activity in general and expected inflation in particular. This position is supported
 by the study of Keane and Runkle (1990). In analysing the characteristics of these forecasts, Keane
 and Runkle found that they were unable to reject the hypothesis that the price level forecasts are
 unbiased and rational.

 In this paper, we use forecasted inflation from the Survey of Professional Forecasters as
 expected inflation. Before turning to the survey data, we first describe the timing of the survey.
 The survey participants were asked to make macroeconomic forecasts for the next quarter.5 The
 deadlines were usually close to the middle of February, May, August or November, depending
 on the quarter forecast. For example, to forecast the second quarter CPI in a year, the survey
 participants were asked to report their forecasts by mid-February. Therefore, the forecasts were
 made around the middle of a quarter instead of at the end of a quarter. The timing of inflation
 forecasts thus does not exactly match that of the CPI survey and the nominal interest rate. As
 a consequence, the implied ex ante real rate, defined as the difference between the nominal

 4 The survey began in 1968 and was conducted by the American Statistical Association and the National Bureau of
 Economic Research. The Federal Reserve Bank of Philadelphia took over the survey in 1990. The survey is publicly
 available at no cost and is often reported in major newspapers and financial news wires. For more information see
 http://www.phil.frb.org/econ/spf/.
 5 The survey participants actually made forecasts for the next five quarters. In this paper, we use only one-quarter
 ahead forecasts.

 Copyright ? 2004 John Wiley & Sons, Ltd. /. Appl. Econ. 19: 869-886 (2004)
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 UNDERSTANDING THE FISHER EQUATION 877

 interest rate and the inflation forecast, is subject to an error arising from this misalignment. If this
 error is 1(0) stationary, the implied ex ante real rate differs from the true ex ante real rate by a
 stationary component. The estimated persistence in the implied ex ante real rate is expected to
 reflect the persistence in the ex ante real rate, with a possible downward bias in small samples.
 Given data availability, we make the assumption that the error arising from such misalignment is
 HO).

 Using data from the Survey of Professional Forecasters, we extract a quarterly series of expected
 inflation rates from 1981:4 to 1999: 3. Figure 3 graphs this expected inflation series against that of
 realized inflation. Expected inflation appears much smoother than realized inflation, revealing the
 volatility induced by the presence of unexpected shocks in realized inflation rates. Over the time
 period shown, there are spikes in realized inflation corresponding to both positive and negative
 shocks. The volatility of these shocks makes the realized inflation series appear less persistent.
 It is also obvious from Figure 3 that the shocks tend to change sign from quarter to quarter.
 This may be attributable to measurement errors in prices, arising from the survey sampling and
 reporting errors in the monthly price level. If the resulting measurement error in CPI inflation
 is an 7(0) process, then it contributes nothing at frequency zero for CPI inflation, but its local
 spectral shape runs counter to that of the underlying 1(d) process. This makes the realized inflation
 series appear less persistent in small samples. In short, both the volatility of the shocks and the
 negative autocorrelation in the inflation measurement error obscure the slow moving component
 of expected inflation. It can therefore be misleading to infer the persistence of expected inflation
 using realized inflation as a proxy.

 We note, in passing, that there are other sources of measurement error that may have long-lasting
 effects, particularly those arising from changes in the quality of goods and changes in consumer
 spending patterns over time. Such measurement errors do not bear directly on the difference
 between expected and realized inflation, as forecasters presumably seek to predict what the BLS
 will later announce. However, these measurement errors may affect the estimated persistence in
 expected and realized inflation. This issue might be addressed by comparing different consumer
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 Figure 3. Expected and realized inflation (sample size = 72)
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 878 Y. SUN AND P. C. B. PHILLIPS

 price indices, such as CPI data based on arithmetic averages with that based on geometric means.
 Such analysis is obviously beyond the scope of the present paper.

 Figure 4 graphs the EW estimates of the long memory parameter using quarterly inflation
 forecasts over 1981:4-1999:3. Although the sample size is small, the results are indicative.
 Comparing the empirical estimates based on inflation forecasts with those based on realized
 inflation, we observe a substantial difference. In particular, the EW estimates using realized
 inflation are less than the lower limits of the 95% confidence intervals based on expected inflation.
 The difference increases as m increases. This is consistent with the fact that when m is larger,
 the estimator is less able to avoid contamination from short memory (higher frequency) effects
 arising from sources such as a stationary disturbance.

 In much the same way as for inflation, the ex post real rate is more volatile than the ex ante
 real rate because of the presence of the additive short memory component. Figure 4 also shows
 the differences in the two estimates obtained from the ex ante and ex post real rate series. Again,
 the long memory parameter estimates for the ex ante real rate are generally larger than those for
 the ex post real rate. The qualitative observations made for the inflation rate series remain valid
 for the real rate series. These differences are reflected in the LP estimates as well. To save space,
 we do not present the graph for the LP estimates.

 In sum, the empirical estimates obtained in Figure 4 suggest that expected inflation and the ex
 ante real rate may be just as persistent as the nominal rate. Under rational expectations, ex post
 and ex ante variables are characterized by the same degree of persistence because they differ by
 unanticipated shocks. Thus, under this assumption and according to these estimates, actual inflation
 and the real rate observed ex post may be as persistent as the nominal rate.

 3.2. Evaluating the Small Sample Bias

 The last subsection used inflation forecasts to estimate the long memory parameter directly. This
 subsection uses the forecasting data to evaluate the small sample biases of the LP and EW estimates
 when additive perturbations are present.

 I -o- Long memory: expected inflation rate J
 01 -95% confidence band: expected Inflation rate J
 J - Long memory: realized inflation rate | -a- Long memory: ex ante real rate

 95% confidence band: ex ante real rate
 -0.2 h I ? Long memory: ex post real rate_| -]

 I_i_i_i_i_i_i_i-1-1-1

 10 12 14 16 18 20 22 24 26 28 30
 m

 Figure 4. Exact local Whittle estimates of d based on inflation forecasts (sample size = 72)
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 We start by assuming that expected inflation follows a fractional process:

 00 TY/7 -L. L-\

 *? = /* + (!- D-'w, = , + g r{dmk+l)?->
 where {w,} is a Gaussian process with zero mean and continuous spectral densities fw(X). We
 assume that the forecasting errors eT are uncorrelated with 7tes for all r and s. Sun and Phillips
 (2003) show that, under certain regularity conditions, the LP estimator based on actual inflation,
 7T,+1 = 7rf + et+\, is consistent and asymptotically normal. The limiting distribution is

 Vnl(dLp - d) ^ N (bLP, ^j (8)
 where the asymptotic bias effect

 i>LP = -(2^-) ? ,^x -~-^jyJm (9)
 \/e(0)>/ (2J+l)2?2jV

 The asymptotic bias bEP is always negative, just as one would expect when there is short memory
 contamination. The magnitude of the bias obviously depends on the signal-noise (SN) ratio
 fw(0)/fe(0), which is the ratio of the long-run variance of the innovations that drive expected
 inflation to that of the forecasting errors. Again, this is not surprising, since the ratio measures the
 underlying force of expected inflation shocks relative to that of the forecasting errors. Because of
 the presence of the bias in (8), the larger is the force of the forecasting errors, the more difficult
 it is to recover good estimates of the long memory parameter from ex post observations.

 Asymptotic results analogous to (8) for the EW estimator are not available in the literature and
 to derive such results is beyond the scope of the present paper. However, in related work without
 the effect of perturbations, Andrews and Sun (2004) show that the local Whittle estimator has the

 same asymptotic bias, but smaller asymptotic variance than the LP estimator for stationary long
 memory processes. We conjecture these results continue to hold for nonstationary perturbed long
 memory processes. This conjecture is supported by the simulation study reported in Table II below.

 To evaluate the asymptotic bias bLP/^/m, we estimate the forecasting errors et+\ by 7it+\ ? net
 and the innovations wt by (1 ? L)dnnet, where irf is the demeaned inflation forecast. To estimate
 the long-run variances fe(0) and fw(0), we employ the following formula:

 Irvar = y(0) + 2 ? (l - ^-^ y(j) (10)
 where y(k) is the kth autocovariance function. The SN ratio fw(0)/fe(0) can then be calculated
 as the ratio of the estimates of the long-run variances. The estimated ratio evidently depends on
 the choices of p and dn. Table I presents estimates of the inverted SN ratio obtained in this way
 for various selections of p and dn. It shows that the variation in unexpected shocks is indeed
 relatively very large. Large variation in unexpected shocks leads to large small-sample bias. For

 Copyright ? 2004 John Wiley & Sons, Ltd. J. Appl. Econ. 19: 869-886 (2004)
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 Table I. Estimates of the inverted signal-noise ratio (n = 72)

 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 1

 p=l 6.69 7.35 7.84 8.18 8.37
 p = 3 6.24 7.61 8.99 10.34 11.60
 p = 5 5.74 7.36 9.12 10.91 12.67
 p = l 5.93 8.05 10.54 13.33 16.30
 p = 9 6.14 8.55 11.41 14.62 17.99
 p = \l 6.22 8.94 12.33 16.31 20.68
 p = 13 6.60 9.63 13.44 17.92 22.80

 example, when n = 264, m = nl/2, fe(0)/fw(0) = 12 and d = 0.8, the asymptotic bias bLP/*Jm
 is -0.3105, or 39%.
 To examine the effectiveness of the asymptotic results for finite samples, we conduct a

 Monte Carlo simulation. Let xt = (1 ? L)~dwt and yt=xt + et where wt ~ Ud N(0,1) and
 e, ~ Ud _V(0, 12). The Ud assumptions are innocuous, as the bias depends only on the signal-noise
 ratio fw(0)/fe(0). The two variances are chosen to calibrate to the signal-noise ratio in the data
 (see Table I). For each replication with sample size n = 264 and m = n1/2, we estimate the long
 memory parameter using the original process {xt} and using the perturbed process {yt}. Table II
 gives the averages and standard errors of the LP and EW estimates obtained from 1000 replications.
 As expected, the EW estimator has more or less the same finite sample bias but smaller variance
 than the LP estimator. Both the EW estimator and the LP estimator have a large finite sample
 bias. Thus, on bias grounds alone, estimates around 0.55 obtained from ex post data as shown in
 Figures 1 and 2 could come from a model where the true memory parameter is as large as 0.8.
 When the bias is so large, memory parameter estimates obtained from ex post inflation and the
 real interest rate series can therefore be seriously misleading.

 4. FURTHER EVIDENCE USING A NEW BIVARIATE EXACT LOCAL WHITTLE
 ESTIMATOR

 The small-sample biases discussed above arise because expected inflation and the ex ante real
 rate are not directly observable. Of course, we can use survey data on expectations such as that
 from the Survey of Professional Forecasters as proxies. However, time series of expectations data

 Table II. Average estimates using original series and perturbed series (n = 264)

 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 1

 LP dx 0.5028 0.6133 0.6971 0.8053 0.9003 1.0095
 Std(dx) (0.2013) (0.2018) (0.2059) (0.2011) (0.2057) (0.2132)

 dy 0.2249 0.3326 0.4432 0.5778 0.6944 0.8227
 Std(dy) (0.2170) (0.2033) (0.2168) (0.2069) (0.2059) (0.2146)

 EW dx 0.4805 0.5823 0.6752 0.7826 0.8752 0.9768
 Std(3,) (0.1821) (0.1780) (0.1699) (0.1750) (0.1712) (0.1789)

 dy 0.2084 0.3072 0.4212 0.5512 0.6611 0.7826
 Std(dy) (0.1676) (0.1691) (0.1737) (0.1664) (0.1632) (0.1688)
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 UNDERSTANDING THE FISHER EQUATION 881

 like the inflation forecasts series we have used earlier are not long series, so empirical estimates
 based on them may not be very accurate, particularly for a parameter that characterizes long-range
 dependence in the data. In this section, therefore, we explore the structure of the Fisher equation
 further and propose a new estimator that is based on the ex post data to achieve bias reduction.

 4.1. The Bivariate Exact Whittle Estimator

 Observe that the ex post real rate and the realized inflation rate can be represented in system
 format as

 O+i = tret - et+\

 tth-i = 7tet + et+i (11)

 Under the assumption that rf and jrf are fractional processes, both rt+\ and nt+\ are perturbed
 fractional processes. Furthermore, the perturbations are from the same source, i.e. the unexpected
 inflation shocks. Therefore, we can expect that it is more efficient to estimate the fractional
 parameters jointly.

 Assuming that the ex ante variables and forecasting errors are uncorrelated, the generalized
 spectral density matrix f(k) of xt := (rt, 7tt)' satisfies

 f(X) ~ AGA* + kH as k -+ 0+ (12)

 where A = diag(e2dliX~dl, e2d2iX~d2), d = (du d2)\ k = o2/(2tt), G is a symmetric positive
 definite real matrix,

 and the affix * denotes complex conjugate transpose. For more details on the generalized spectral
 density, see Solo (1992), which gave a formal justification of f(X) as a spectral density in terms
 of the limit of the expectation of the periodogram. Define Ad(xt) = (Adlrt, Ad27tt)f and

 1 I n I2
 IAd(x)(Xj) = ?J2 ^McxpdtXj) , Aj = diag(e%dlik-dl,e%d2ik]d2) (14)

 t-\

 Then the (negative) exact local Whittle likelihood is

 1 _m_

 Qm(G, ?,d)=-Y^ (log \AjGA) + kH\ + tr[(G + kAt^A^V/a^)(*,)]) 7=1

 Minimizing Qm(G, k, d) yields the bivariate exact Whittle (BEW) estimator

 (Grew, *bew, dBEW) = argmin2m(G, k, d) (15)

 When xt is a scalar time series, both G and 7A</(jc) reduce to positive scalars. In this case, we get
 the univariate exact Whittle (UEW) estimator. Observe that the UEW estimator is different from
 the EW estimator of Shimotsu and Phillips (2002a) because, unlike the EW estimator, the UEW
 estimator takes account of the additive perturbations in the observed series. To avoid confusion,

 Copyright ? 2004 John Wiley & Sons, Ltd. / Appl Econ. 19: 869-886 (2004)

This content downloaded from 129.199.200.94 on Tue, 13 Sep 2016 13:40:46 UTC
All use subject to http://about.jstor.org/terms



 882 Y. SUN AND P. C. B. PHILLIPS

 we note that the acronym 'UEW' in what follows always refers to the univariate exact Whittle
 estimator that accounts for additive perturbations, while 'EW' refers to the original exact WTiittle
 estimator of Shimotsu and Phillips (2002a).

 The BEW estimator is motivated by the bivariate Whittle (BW) estimator of Lobato (1999), the
 exact Whittle (EW) estimator of Shimotsu and Phillips (2002a), and the nonlinear log-periodogram
 (NLP) estimator of Sun and Phillips (2003). In view of the established properties of the latter three
 estimators, we expect, under certain regularity conditions, the BEW estimator to be more efficient
 than the corresponding univariate exact Wliittle estimator, to be consistent and asymptotically
 normal for all values of d, and to be less biased than Lobato's BW estimator in the presence of
 stationary perturbations.
 A theoretical development of the asymptotic properties of the BEW is beyond the scope of

 the present paper and is left for future research. Instead, we provide some simulation evidence
 here to justify the new estimator and reveal its finite sample performance in relation to existing
 procedures. To save space, we only consider the following data generating process:

 zu = (1 ~ L)-divlt - et (16)

 z2t = (1 - Lrd*V2t + et (17)

 where d\ = di are long memory parameters, {v\t\, {v2t} and {et} are independent and each is Ud
 _V(0, 12). For each simulated sample of size n = 264, we estimate d\ and di using the EW, LP and
 BEW estimators with bandwidth m = *Jn. The EW and LP estimators are based on the individual
 time series {z\t} and {zit}, whereas the BEW estimator is based on the bivariate series {(z\t, Z2t)'}

 Table III presents the average estimates and the standard deviations (in parentheses) using 500
 simulation repetitions. We note the following two main features of the simulation results. First,
 the BEW estimator achieves substantial bias reduction, producing results that are only slightly
 downward biased. By contrast the EW and LP estimates both show very significant downward
 bias, amounting to as much as 50% in some cases. Second, the variance of the BEW estimator
 appears to lie between that of the EW and LP estimators. It is not so surprising that the BEW
 estimates have greater variance than the EW estimates. Because it utilizes the system structure,
 the BEW estimate is expected to be more efficient than the corresponding UEW estimator, which
 does not make use of the system formulation. On the other hand, the UEW estimator can be
 expected to have larger variance than the EW estimator because UEW estimation involves the
 extra parameter arising from the perturbation effects. Apparently, the latter factor outweighs the
 former, which leads to the BEW estimator having larger variance than the EW estimator.

 4.2. Empirical Estimation and Inference using BEW

 We now use the BEW estimator to estimate the fractional difference parameters using actual
 inflation and the ex post real rate. Figure 5 presents the results, using the data from 1934:1 to
 1999:4. Compared with Figures 1 and 2, we find that the BEW estimates are significantly higher
 than both the EW and LP estimates. For the bandwidths considered, the estimated integration
 orders are larger than 0.75 and centre around 0.9. So, the BEW estimates appear to fall in the
 same general range as the estimated integration order of the nominal interest rate (based on either
 EW or LP estimation). These empirical estimates of the long range dependence of the Fisher
 components are therefore generally consistent with the Fisher equation.

 Copyright ? 2004 John Wiley & Sons, Ltd. J. Appl. Econ. 19: 869-886 (2004)
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 Table III. Finite sample performance of the EW, LP and BEW estimators (n = 264)

 EW estimator LP estimator BEW estimator

 (d\,d2) d\ d.2 d\ _.2 d\ di

 (0.4,0.4) 0.1383 0.1440 0.1306 0.1490 0.3800 0.3779
 (0.1330) (0.1291) (0.2068) (0.2060) (0.1730) (0.1749)

 (0.6,0.6) 0.3146 0.3109 0.3273 0.3194 0.5678 0.5761
 (0.1579) (0.1615) (0.2025) (0.2065) (0.1864) (0.1903)

 (0.8, 0.8) 0.5418 0.5392 0.5709 0.5670 0.7422 0.7449
 (0.1645) (0.1776) (0.2056) (0.2140) (0.1921) (0.1813)

 (1.0, 1.0) 0.7892 0.7843 0.8417 0.8302 0.9369 0.9319
 (0.1570) (0.1630) (0.1983) (0.2093) (0.2040) (0.2000)

 095- I / \\ y-'/"

 I ' V ' ' 0.85-/ I \ I
 ' i x. ' - Long memory: inflation

 ' \' j-Long memory: real rate |

 0.8 - /
 /
 i_i-1-1-1-1-1

 20 30 40 50 60 70 80
 m

 Figure 5. Bivariate exact Whittle estimates of d (sample size = 264)

 The empirical estimates in Figures 1, 2 and 5 show that inflation and the real rate may well be
 integrated of the same order. To investigate this further, we formally test the null Hq : dn = dr
 against the alternative Hi: dn > dr. To do so, we construct the test statistic T = y/m(dn ? dr),
 where (dn,dr) is the BEW estimate of (djt,dr), rejecting the null if T is larger than some
 critical value.

 Since an asymptotic theory of the BEW estimator has not yet been established, we use
 simulations to compute the critical value for a given size. The experiment is designed as follows.
 The data generating processes for rt and 7it are

 O+i = rf - et+i = (1 - L)~drut - et+i (18)

 7TH-! = itf + et+x = (1 - L)~d*vt + et+x (19)

 where dr = dn ? do, {et} is Ud _V(0, a2) and (ut, vt) follows a fourth-order vector autoregressive
 model. Since the long memory cannot be precisely estimated, we use a range of long memory

 Copyright ? 2004 John Wiley & Sons, Ltd. /. Appl. Econ. 19: 869-886 (2004)
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 parameters. For each value of do = 0.5, 0.6, 0.7, 0.8, 0.9, 1, we first apply the fractional difference
 operators (1 ? L)do to the forecasted inflation rates (extracted from the Survey of Professional
 Forecasters) and the forecasted real rates (calculated by subtracting forecasted inflation from
 nominal rates) to get {ut, vt] and then use them to estimate the VAR in the DGP. The choice
 of bandwidth in the bivariate Gaussian semiparametric estimator necessarily involves judgement.
 Although too large a value of m causes contamination from high frequencies, too small a value of
 m leads to imprecision in estimation. Hence, several values of m are employed. For each value of
 m = nl, I = 1/2, 2/3 and 3/4, we perform 500 replications with sample size n = 264. Table IV
 contains the critical values so obtained for / = 1/2, 2/3 and size of 5% and 10%.

 The power properties of this test are also examined using simulations. The data generating
 processes are the same as before except dn > dr. For each combination of dn and dr such that
 dn = dr + (k ? 1)/10, k = 1,..., 6, we first apply the fractional difference operator (1 ? L)d?
 with do = dr to the forecasted inflation rates and the forecasted real rates to get [ut, vt] and then
 use them to estimate the VAR in the DGP. We report the powers based on 500 replications when
 the size is 10%, n = 264 and m = n1/2 in Table V. Apparently, the power increases with the
 difference between dn and dr and is reasonably high when the difference is greater than 0.4.

 We now perform this test in the empirical application using the ex post data. The results for m
 at equispaced points in the interval [10, 90] are tabulated in Table VI. For all values of m > 10,

 Table IV. Empirical critical values for the T-test (n = 264)

 Jo = 0.5 Jo = 0.6 Jo = 0.7 Jo = 0.8 J0 = 0.9 J0 = 1.0

 5% / = 1/2 1.4829 1.7076 1.7600 1.8710 1.8994 1.9060
 1=2/3 0.9174 0.9994 1.0037 0.9775 0.9125 0.9156
 10% / = 1/2 1.0538 1.2628 1.3379 1.2526 1.2807 1.2625
 1=2/3 0.7015 0.7467 0.7096 0.7345 0.6365 0.6530

 Table V. The power of the T-test (n = 264)

 k

 0 12 3 4 5

 Ji=0.5 10.00 19.80 32.20 59.00 81.40 93.50
 Ji=0.6 10.20 15.20 25.60 47.40 71.20 89.00
 Jl = 0.7 10.00 16.80 27.00 45.00 68.00 82.80
 Jl = 0.8 10.20 17.40 29.40 47.20 65.80 83.60
 Ji=0.9 9.80 15.60 29.40 46.80 67.20 81.20

 Table VI. Bivariate estimates and tests: ex post data (n = 264)

 m 10 20 30 40 50 60 70 80 90

 d* 0.8645 0.8266 0.8961 0.9298 0.9993 0.8974 0.9268 0.9516 0.9780
 dr 0.6610 0.7700 0.8537 0.8907 0.9624 0.8694 0.9105 0.9327 0.9516

 T 0.6504 0.2530 0.2320 0.2468 0.2608 0.2175 0.1358 0.1690 0.2505
 J 0.7572 0.8181 0.8958 0.9244 0.9876 0.8929 0.9271 0.9501 0.9717
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 including the values not presented here, dn is only slightly larger than dr. Using the critical values
 given in Table IV (and those not reported here for intermediate values), we cannot reject the null
 at the level of 10%. According to this evidence, therefore, inflation and the real rate are inte
 grated of the same order. From the ex ante Fisher equation, the nominal rate also has the same
 order of integration. As a consequence, all three ex ante and ex post Fisher components share
 the same degree of persistence. The last row of Table VI reports the restricted estimates when we
 impose the restriction that dn ? dr. As might be expected, the restricted estimates fall between
 the unrestricted ones, which are presented in the first two rows in Table VI. Combining this with
 the estimates based on the univariate nominal rate series, these empirical findings suggest that the
 integration order of the Fisher components lies between 0.75 and 1.

 Equality of the integration orders of the three Fisher components has important implications
 for the long-run Fisher hypothesis, which states that the nominal rate moves with the expected
 inflation rate in the long run. Since both variables appear to be fractionally nonstationary, validity
 of the long-run Fisher hypothesis requires the existence of a fractional cointegrating relationship
 between these variables. In addition, the full Fisher effect implies the cointegrating vector must
 be (1,-1). In effect, therefore, the long-run Fisher hypothesis requires that the residual in this
 relationship, i.e., it ? nf, be less persistent than it and net. However, this residual is the ex ante real
 rate, which according to the evidence above is as persistent as 7tet. It follows from these findings
 that the relationship is not cointegrating and the long-run Fisher hypothesis does not hold.

 5. CONCLUSIONS

 Many empirical studies in the past have investigated the orders of integration of the Fisher equation
 variables. Given the recent development of robust semiparametric estimation methods for stationary
 and nonstationary long memory, this practice is now being extended to include analyses of the
 degree of persistence using fractional models and estimates of the degree of long-run dependence
 in each of the series. For time series that may be perturbed by weakly dependent noise, we show
 here that estimating the degree of persistence is more difficult because of the presence of a strong
 downward bias in conventional estimates of long memory.

 In the present context, ex post data can be viewed as noisy observations of the ex ante variables.
 Our findings reveal that conventional semiparametric estimation using ex post data substantially
 underestimates the true degree of persistence in the ex ante variables and, hence, that of the ex
 post variables themselves. The bivariate exact Whittle estimator introduced here explicitly allows
 for the presence of additive perturbations or short memory noise in the data. This new estimator
 enhances our capacity to separate low-frequency behaviour from high-frequency fluctuations and
 gives us estimates of long range dependence that are much less biased when there is noise
 contaminated data. Evidence based on this new estimator supports the hypothesis that the three
 Fisher components are integrated of the same order. Accordingly, we find little support for the
 presence of a cointegrating relation among the Fisher variables and, therefore, little support for
 the long-run Fisher hypothesis.
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