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Abstract

Indirect taxes contribute to a sizeable part of government revenues around the world. Typically there are few different tax rates,
and the goods are partitioned into classes associated with each rate. The present paper studies how to group the goods in these few
classes. We take as given the number of tax rates and study the optimal aggregation (or classification) of commodities of the fiscal
authority in a second best setup. The results are illustrated on data from the United Kingdom.
© 2008 Elsevier B.V. All rights reserved.

JEL classification: H21; H23
Keywords: Indirect tax; Ramsey; Aggregation
1. Introduction

The French government recently wanted to change the rate of the value added tax bearing on meals taken in
restaurants, but the European Union did not accept France's demand. The standard theory of indirect taxation would
possibly recommend to tax restaurants at a higher rate than fast food places, e.g. because rich households spend a larger
fraction of their income in restaurants than the less well-off. This theory, however, does not take into account a strong
constraint imposed on EU members. Indeed, according to the 92/77 directive, EU members are allowed to set only one
or two reduced (low) rates in addition to the standard (high) tax rate, so that they are forced to impose the same rate on
many different commodities. The purpose of this paper is to describe how different commodities should be grouped
when there is a constraint on the number of tax rates.
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The Ramsey tax rule usually assumes that different commodities can be taxed at different rates, and when consumers
have heterogeneous tastes and income, the optimal tax rates typically differ across goods.1 In a partial equilibrium
framework, assuming no substitution between goods, each commodity is assigned two numbers: its demand elasticity
with respect to own price and its social weight, which reflects its relative usage among the poor and wealthy in the
population. For a given social weight, the optimal tax rate is inversely proportional to the price elasticity; and, given the
elasticity, the tax rate decreases with the social weight.

The situation where the number of available tax rates is smaller than the number of taxable goods has received little
attention in the literature. Two previous theoretical papers are relevant. Gordon (1989) studies an economy where all
goods are initially taxed at the same rate, and considers small changes in a tax reform perspective. Belan and Gauthier
(2004, 2006) study the case of low (close to zero) levels of collected tax in a single agent framework with a finite
number of goods. They find that the optimal tax rate bearing on a good is weakly decreasing in the price elasticity. To
the best of our knowledge, there is no applied analysis of this issue.

In this paper, we depart from Belan and Gauthier (2006) by considering a continuum (instead of a finite number) of
taxable commodities. Each good is assumed to be negligible with respect to the total, so that it is possible to change the
tax rate bearing on an elementary commodity while leaving unchanged the whole tax structure and the marginal cost of
public funds. This allows us to consider arbitrary (far from zero) levels of taxes and to derive simple properties of the
optimum. We also take into account heterogeneity and equity concerns. The theoretical predictions are used to study
whether actual tax systems depart from optimality. We give a first look at this topic on data from the UK. The
assumption that the observed tax rates are optimal provides information on the underlying social welfare function,
which in turn puts restrictions on how to tax the goods.

The continuum assumption allows us to partially characterize the optimal grouping structure with the help of a
purported tax rate. Such a rate is defined as the one that the social planner would apply to a good if this good
could be taxed freely, while keeping unchanged the tax rates supported by the other commodities, fixed at their
constrained optimum values. If social welfare satisfies a single-peakedness property with respect to tax rates, the
highest attainable welfare must be at one of the typically two rates which are the closest to the ideal rate, on either side
of this rate. It remains some uncertainty, at this stage, concerning the exact conditions under which a given good should
be taxed at one particular rate, among the two relevant candidates.

In practice, it is unlikely that reliable information be available on how price elasticities change with prices. If one
focuses attention on the particular case where the price elasticities and social weights do not vary with the tax rates, then
one can fully characterize the tax structure, and answer the question about the exact conditions under which any
individual good should be taxed at a given rate. The result is clear-cut: the Ramsey monotonicity properties are shown
to be weakly satisfied. That is, given the price elasticity, the tax rate is non-increasing with the social weight, and
similarly, given the social weight, the tax rate is typically non-increasing with the price elasticity.

The previous argument provides insights on whether a given actual fiscal scheme is optimal and why it may not be.
In order to apply these results to data from the United Kingdom, we extend the analysis to the case in which cross price
effects are not zero. We assume that the observed rates on the existing groups are optimally chosen. This yields
constraints on the implicit redistributive aims of the government. It appears that the social weights that best fit the
current tax scheme put most of the weight on the population segment associated with the middle of the consumption
distribution, the fourth and fifth deciles. For these social weights, the actual commodity groupings do not look far
from optimality. The main departures concern goods whose taxation is likely to rely on other considerations,
environment or public health considerations, than mere redistribution. Thinking of the French demand to the European
Union, in the UK, ‘Food out’, which comprises restaurants and fast food places, is currently taxed at the standard rate,
but appears to be too heavily taxed. Our analysis actually suggests that some items in this group should be exempted
from any tax.
1 See Saez (2002). When the consumers have the same tastes and when their labor supplies are separable from their demands for commodities,
nonlinear income taxation yields a uniform taxation of all the goods (Atkinson and Stiglitz, 1976 and Mirrlees, 1976). Apart from non-separability
and/or heterogeneous tastes, optimal indirect tax rates may differ across commodities for certain types of production functions (Stiglitz, 1982; Naito,
1999 or Saez, 2004), if it is possible to evade tax (Boadway et al., 1994), in order to correct externalities (Green and Sheshinski, 1976), in presence
of uncertainties (Cremer and Gahvari, 1995), or when the authority implementing direct taxes is not perfectly coordinated with the one that designs
indirect taxes, possibly because the decisions are taken at different points in time or in space (federal, state or city levels).
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The paper is organized as follows. A simple framework which assumes separability between goods is first analyzed.
It is described in Sections 2 and 3, and the optimal indirect tax schedule when the number of tax rates is restricted is
characterized in Section 4. Section 5 extends the results to the case in which cross price effects matter. An application to
data from the United Kingdom is presented in the final section. The proof of the main result is at the end of the paper.
An Appendix with supplementary material appears on the web site of the journal.

2. Consumers

There is a continuum of goods g, g in G, and a numeraire. The typical consumer, designated with an index c, c in C,
maximizesZ

G
u xg; g; c
� �

μ gð Þdg þ m

under her budget constraintZ
G

1þ tg
� �

xgμ gð Þdg þ m ¼ wc:

Both sets C and G are equal to the [0, 1] interval of the real line. The function u, defined over ℝþ ×G×C, is
assumed to be increasing, concave and twice continuously differentiable with respect to consumption xg, xg in ℝþ, and
continuous with respect to g and c. The consumption of numeraire is denoted by m. The relative importance of the
various commodities is partially captured by their density μ with respect to the Lebesgue measure. The units of
commodities are chosen so that all producer prices equal 1. Thus, when commodity g is taxed linearly at rate tg,
tg≥−1, the consumer price is 1+ tg. Finally, wc is the exogenous income of consumer c.

Under the usual Inada conditions, the separability assumptions embodied in (2) imply that the demand ξg (tg, c) of
commodity g by consumer c is the unique solution of the first-order condition ux′ (x, g, c)=1+ tg. It is decreasing and
continuously differentiable with respect to the tax rate.

The indirect utility from consuming a good g taxed at rate tg, writes

υg tg; c
� � ¼ u ng tg; c

� �
; g; c

� �� 1þ tg
� �

ng tg; c
� �

;

and therefore the overall indirect utility of consumer c isZ
G
υg tg; c
� �

μ gð Þdg þ wc:

3. Optimal unconstrained tax schedules

When choosing indirect taxes, the government takes as given market behavior. It seeks to maximize the sum of the
utilities of the consumers, weighted by some a priori weights αc, αc≥0 for all c, normalized so thatZ

G
acdm cð Þ ¼ 1;

where ν is the (probability) measure describing the distribution of consumer characteristics on the set C.
The objective of the government can be written as the sumZ

G
Vg tg
� �

μ gð Þdg; ð1Þ

where

Vg tg
� � ¼ Z

C
acυg tg; c

� �
dm cð Þ:
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By Roy's identity,

dVg

dtg
tð Þ ¼ �ag tð ÞXg tð Þ;

where

Xg tg
� � ¼ Z

C
ng tg; c
� �

dm cð Þ

represents the aggregate demand for good g, and

ag tð Þ ¼
Z
C
acng t; cð Þ=Xg tð Þdm cð Þ

is a positive number which measures the social weight of good g. Namely, it is large when the agents c with the largest
weights αc consume relatively more of the good.

Assume first that there is no constraint on rates setting. When fiscal income to be collected is R, the government has
to choose tax rates tg, g∈G, which maximize (1) under the budget constraintZ

G
tgXg tg

� �
μ gð Þdg ¼ R:

Let λ denote the multiplier associated with the budget constraint. At the optimum, it corresponds to the marginal
cost of public funds. The government problem is equivalent to maximizingZ

G
Lg tg
� �

μ gð Þdg;

where the Lagrangian Lg(tg)=Vg (tg)+λtg Xg (tg) represents the contribution of good g to the welfare objective. If the
authority can freely choose the tax rate bearing on good g, the necessary first-order condition for an interior optimum
is, appealing to Roy's identity, −ag (t)Xg (t)+λ(Xg (t)+ tXg′ (t))=0 or, dropping the index g to simplify notations,

t
1þ t

¼ k� a
k

X
� 1þ tð ÞX V

: ð2Þ

This corresponds to the Ramsey rule, in which the tax rate applying to a consumption good is inversely related to the
price elasticity − (1+ t)X′/X of the (aggregate) demand for this good.2

One should be careful when using the first-order condition since the program of the government is not well behaved,
the Lagrangian Lg (tg) being often not concave in tg.

For instance, in the case where all the agents have demands for good g with the same constant price elasticity εg, a
necessary and sufficient condition for global concavity of the Lagrangian is λ(1−εg)≥ag (see Main proof on the
journal web site). If λ(1−εg)bag, then the Lagrangian is first concave and then convex. With constant price elasticity
nevertheless, whatever the direction of the inequality, the Lagrangian is single peaked, so that the first-order condition
characterizes a global maximum.

In order to encompass such situations, we use the following assumption:

Assumption 1. Given the marginal cost of public funds λ, a good g satisfies the single peaked assumption when the
function Lg, defined on (−1, +∞), satisfies one of the following three properties:

1. It is increasing;
2. It is increasing from −1 to some τg (λ) and decreasing from then on;
3. It is decreasing.
2 Indirect taxation is useless when λ=ag for all consumption goods g, a condition unlikely to be satisfied when the agents do not have the same
tastes, as emphasized in the recent literature, e.g. in Saez (2002).
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There is another large class of situations, on top of the constant elasticity case, where the single peaked assumption is
easy to check. This is when the elasticity of aggregate demand with respect to the tax rate, tX′/X, is non-increasing in t, and
the social weight of the good is non-decreasing.3 Contrary to concavity, however, the single-peakedness property is not
preserved under aggregation: the sum of single peaked functions is not always single peaked (see Fig. 3 of Main proof).

The normal situation is that of Assumption 1.2. The analysis is easily extended when the solution goes to the
boundaries of the tax domain: under Assumption 1.1 (resp., Assumption 1.3), the optimal tax rate is equal to +∞: the
good is made infinitely expensive (resp., to −1: the good is made free).

4. Tax rule with a finite number of rates

Assume now that there is an a priori given finite number K of different tax rates, tk, k=1,…, K, without loss of
generality ranked in increasing order, tk≤ tk+1 for all k. Let Gk be the subset of goods which are taxed at rate tk and G
the collection of Gk. The government program becomes:

max
tk ;Gkð ÞKk¼1

XK
k¼1

Z
Gk

Vg tkð Þμ gð Þdg

XK
k¼1

Z
Gk

tkXg tkð Þμ gð Þdg ¼ R

[K
k¼1

Gk ¼ G:

8>>>>>>>>><
>>>>>>>>>:

ð3Þ

The government has to choose the K tax rates (or possibly K−1, if one of them is constrained to be equal to zero)
and the partition of the set of commodities associated with the various tax rates. Formally, this is a more complicated
problem than the Ramsey problem, since it involves the variablesG, to which the standard Lagrangian methods do not
immediately apply.

4.1. Optimal tax rates for a given partition of the goods

Given the partition G, however, the problem is standard. Under usual regularity conditions, one can write the
Lagrangian associated to this problem. When differentiating with respect to the tax rates, it is natural to consider the
aggregate commodity Gk,

XGk tð Þ ¼
Z
Gk

Xg tð Þμ gð Þdg:

The necessary first-order condition corresponding to tk, first derived in Diamond (1973), can then be written as

tk
1þ tk

¼ k� aGk

k
XGk

� 1þ tkð ÞX VGk

¼ k� aGk

k
1
eGk

: ð4Þ

In this expression, aGk is the average of the social weights of the individual commodities in Gk,

aGk ¼
Z
Gk

Xg tkð Þ
XGk tkð Þ ag tkð Þμ gð Þdg;

and εGk
is a weighted sum of the elementary price elasticities of the goods g in Gk,

eGk ¼
Z

Xg tkð Þ
XGk tkð Þ eg tkð Þμ gð Þdg:
3 The social weight of a good is non-decreasing in the tax rate when the demand of the socially unfavored (rich) agents decreases relatively to that
of the socially favored (poor) agents when the tax increases. To show the property, observe that the derivative LV=−aX+λ(X+ tX′) has the same
sign as (λ−a)/λ+ tX′/X. Thus, if a is non-decreasing in t and tX′/X is non-increasing, LVat most has one change of sign, so that L is single peaked.
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Hence, given the partitionG, optimal tax rates obey the Ramsey rule: The optimal tax rate tk decreases with both the
price elasticity εGk of demand for goods in Gk and the social weight aGk of this group.

4.2. Optimal partition of the goods

In order to know how to allocate goods across groups, consider an individual commodity g, small with respect to the
economy. Under the continuum hypothesis, a change in its tax rate leaves the marginal cost of public funds λ
unchanged, since this parameter depends on the whole tax structure.

In this circumstance, we have:

Theorem 1. A necessary condition for optimality is that, for almost every good, good g be attached to group Gk such that

Lg tkð Þ ¼ max
h¼1; N ;K

Lg thð Þ: ð5Þ

The assumption that there is a continuum of commodities, each negligible with respect to the whole economy, is
crucial here. If a commodity were not of negligible size, as in Belan and Gauthier (2006), a change in the tax rate it
supports would affect the marginal cost of public funds and the theorem would not hold. The result of the Theorem is
quite intuitive, but its proof (at the end of the paper) needs some care, involving the Lyapunov theorem.

Let tg
R be the tax rate that this good would support in the hypothetical situation where it would be taxed individually, all

remaining goods being taxed at the (constrained) optimum. For an interior solution, tg
R satisfies the Ramsey rule (2). A

direct consequence of the single peakedness of the Lagrangian is

Lemma 1. Under Assumption 1, at the optimum,

1. IfLg is increasing, good g belongs to themore heavily taxed groupK; if it is decreasing, it belongs to the less taxed group.
2. Otherwise, with tg

R the tax rate that maximizes Lg,
(a) if tg

R is larger than tK, commodity g supports the maximal rate;
(b) if there exists k, kbK, such that tk≤ tg

R≤ tk + 1, then g is taxed either at rate tk or at rate tk+ 1;

(c) if tg
R is less than t1, g is taxed at rate t1.

This lemma helps to describe some features of the optimal groups of commodities. Indeed, when only efficiency
matters (ag is identically equal to one for all g), Lemma 1 and the monotonicity of the Ramsey formula (2) in elasticities
directly imply:

Theorem 2. At an optimum, in the absence of redistribution motive, if the Ramsey price elasticity of good g, εg
R=εg (tg

R),
is smaller than εGk

, then good g is taxed at the maximal rate tK. If εg
R is larger than εG1

, then good g is untaxed. Otherwise,
g is taxed at one of the k or k+1 rates such that

eGkzeRgzeGkþ1 :

In the absence of a redistribution motive, a weak version of the inverse elasticity rule consequently applies to
individual goods, in the sense that the tax rate which should be supported by each individual good is non-increasing
with respect to its price elasticity, when evaluated at the putative free optimum.

In the more general case where the government has a redistributive objective, the social weights of the commodities
typically differ from one. In the plan (ε, a/λ), when the representative point (εg

R, ag
R/λ) of good g (with ag

R=ag (tg
R))

belongs to the cone delimited by the two half lines

a
k
¼ 1� tk

1þ tk
e and

a
k
¼ 1� tkþ1

1þ tkþ1
e;

Lemma 1 and the first-order condition (2) imply that it should be taxed at one of the two rates tk or tk+1.
Fig. 1 is drawn with three tax rates, t1=0.0, t2=0.2, t3=0.4: the three dashed lines are the corresponding half lines

which delimitate the cones. By Theorem 2, all goods g such that ag/λ≥1 should be exempted, while all those such that
ag/λ≤1− t3εg/(1+ t3) should be taxed at the highest rate t=0.4.



Fig. 1. The efficient tax structure.
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Theorem 2 is not sufficient to pin down the exact optimal tax rate that should be applied to goods whose
representative points stand in the intermediate region. Further insights can be gained from the special case with constant
price elasticities and constant social weights. Then, one can indeed provide a full characterization of the partition of the
plan. In the case of Fig. 1 there are actually two curves, whose exact analytic expression is given in Main proof on the
journal web site, such that all goods in between these curves should be taxed at rate t2, those above this region should
be exempted, while those below should be taxed at the highest rate t3. They are depicted in bold in Fig. 1.

When tax rates are non-negative, these curves are decreasing. In other words, in any given cone delimited by two
half lines corresponding to two rates t and t′, with 0≤ tb t′, there exists a unique threshold social weight above which a
good should be taxed at the lowest rate, t, and below which it should be taxed at the highest rate, t′. This threshold
appears to be decreasing with respect to price elasticity, which fits the common intuition: The larger the price elasticity
of a good, the smaller the minimum social weight for which it becomes heavily taxed. Equivalently, for any social
weight, there exists a threshold price elasticity such that a good in this cone will be taxed at the highest possible rate, t′,
if and only if its price elasticity is below this threshold.

Additional properties of these thresholds can be derived. In particular, the boundary curves are convex, and their
slopes tend to that of the upper half line when the price elasticity goes to infinity. Strict convexity implies that, in any
given cone, two commodities with the same purported ideal rates may be taxed at different rates in the optimal
grouping.

To summarize, with constant price elasticities and constant social weights, we have obtained a complete
characterization of the tax structure at the level of individual goods. It turns out that a weak version of the Ramsey rule
holds: The tax rate which should be applied to any individual good is weakly decreasing with respect to its own
individual weight; when tax rates are non-negative, it is also decreasing with respect to its own individual price
elasticity.

5. Non-separability of consumers' preferences

To apply our analysis to the data, we must enlarge the set of individual preferences and introduce, if possible, labor
supply together with direct taxes. Let consequently the tastes of agent c be now represented by the utility function U (x,
Lc, c), where x describes the consumption of goods, a measurable mapping from the set of commoditiesG intoℝþ. The
budget constraint of the typical consumer is:Z

G
1þ tg
� �

xgμ gð Þdg ¼ Yc;

where Yc is after tax income, i.e. Yc=wcLc−T (wcLc), for an income tax scheme T.
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From now onwards, we shall work conditionally on the labor supply Lc. Let t be the collection of tax rates (tg), and
V (t, Lc, Yc, c), the conditional indirect utility function of consumer c. The government chooses t which maximizesZ

C
acV t; Lc; Yc; cð Þdm cð Þ

subject to the budget constraintZ
C

Z
G
tgng t; Lc;Yc; cð Þμ gð Þdg dm cð Þ ¼ R;

where ξg (t, Lc, Yc, c) is the conditional (Marshallian) demand for good g of individual c.
Let ρc stand for the marginal utility of income of individual c. Using Roy's identity,

AV
Atg

¼ �qcng t; Lc; Yc; cð Þ;

and the necessary first-order condition for a maximum of the Lagrangian with respect to the tax rate tk of group Gk is
(see Appendix C on the journal web site)Z

gaGk

�ag þ k
� �

Xg þ k tg
AXg

Atg
þ
Z
g Vp g

tg V
AXg V

Atg

� �� �
μ gð Þdg ¼ 0; ð6Þ

where the social weight of good g now expresses as

ag ¼
Z
C

ng
Xg

acqcdm cð Þ: ð7Þ

If good g could be taxed freely, the individual tax rate tg
R would satisfy the first-order condition associated with an

interior maximum,4

�ag þ k
� �

Xg þ k tRg
AXg

Atg
þ
XK
k¼1

tk
AXGk 5 gf g

Atg

" #
¼ 0: ð8Þ

The analysis of Section 4.2 can then be adapted to thismore general setup.Namely, rewriting the first-order condition (8) as

ag
k
� bg ¼ 1� t

1þ t
eg; ð9Þ

where

bg ¼ 1
Xg

XK
k¼1

tk
AXGk5 gf g

Atg
; ð10Þ

one can draw Fig. 1 in the plan (ε, a/λ−b) with a similar interpretation, provided that the Lagrangian is single peaked with
respect to each tax rate tg separately, with the representative point (εg, ag/λ−bg) of good g evaluated at the optimal tax rates
solution of (8).

6. Illustration with data from the UK

Professor Ian Crawford, from the Institute for Fiscal Studies, has provided us with uncompensated cross price
elasticities for consumption in the UK, grouped into twenty categories,5 homogenous by tax rates, computed along the
4 As indicated in Appendix C, Eqs. (6) and (8) are obtained under the assumption that substitution between commodities is not too large.
5 In the analysis, we shall drop ‘children clothing’, which represents less than 1% of aggregate consumption expenditure, because the estimated

price elasticities are somewhat out of the ball park.
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lines initiated by Blundell and Robin (1999), and with the budget shares by deciles of consumption expenditures in the
population (the data is reproduced at the end of the Appendix). A large part of consumption, 49%, is subject to the
‘standard’ (17.5%) tax rate, and a substantial part, 27%, necessities including basic food, is either exempted or taxed at
a zero rate. Our data do not separate exempted from zero rate items, and we treat the whole category as zero rated.6

Domestic fuel, 10% of consumption, is taxed at the ‘reduced’ (5%) rate. Tobacco, alcohol, and petrol and diesel bear
large excise tax rates.

In order to see whether the actual grouping of commodities fits the theory developed above, we assume that
the tax authority takes as given after tax incomes and chooses optimally both the partition of the commodities
and the tax rates. We want to check whether the data is consistent with this assumption. If VAT rates are
optimally chosen, then they must satisfy the Diamond first-order conditions (6). These restrictions provide some
information on the underlying social weights used by UK government. Given these weights, one can compute
the individual purported rates that would apply to each of the twenty categories of goods. This allows us to
draw the analogous of Fig. 1 for the UK, and thus to assess the optimality of the composition of the commodity
groups.

It is important to emphasize that such an exercise does provide information on the optimal indirect tax rates given
the current income tax schedule. Indeed, if the government could freely tax income in a non-linear way, and if, in
addition, the Atkinson–Stiglitz conditions would prevail (preferences are separable between commodities and labor,
and the preferences for commodities are identical across individuals at the microeconomic level), then all the goods
should be taxed at the same rate (see Atkinson and Stiglitz, 1976; Kaplow, 2006; or Laroque, 2005). Here, however, we
work with fixed after tax incomes.7

6.1. The government redistributive objectives

The redistributive stance of the government is represented by a vector of non-negative weights associated with the
ten population deciles, whose coordinates sum up to 1. For consistency, these weights should be such that the
Diamond first-order conditions (6) for the basic three commodity groups, exempted, reduced rate and standard rate,
are satisfied. The tax rates on alcohol, tobacco, and petrol do not give direct information on the redistributive stance,
since they are likely to depend on other considerations than mere redistribution, e.g. public health or environmental
issues.

As a result, given the observed tax rates, budget shares and price elasticities,8 the ten unknown αcρc and the
marginal social cost of public funds λ must satisfy four linear equations, the three first-order conditions and the
normalization condition. Therefore, in general, one cannot expect to recover the government objective from the
Diamond first-order conditions: If there is some interior (strictly positive) solution to the equations, the set of solutions
is locally a manifold of dimension 11 −4=7.
6 The difference between the two categories comes from the fact that a producer of a zero rated good can reclaim the VAT bearing on his inputs,
while the producer of an exempted good cannot. As a consequence, the exempted goods actually support some tax.
7 In addition, to the best of our knowledge, there is no general agreement on the empirical relevance of the Atkinson-Stiglitz conditions. Browning

and Meghir (1991) find some evidence of non-separability.
8 Since there is a finite number of commodities, we have to rewrite (6) as

X
gaGk

�ag þ k
� �

Xg þ k
X
g VaG

tg V
AXg V

Atg

 !
¼ 0:

The consumption, rather than production, price is the numeraire. Using tildas for the variables measured with the new numeraire, X̃g= (1+ tg)Xg.
After some manipulations, (6) becomes

�aGk þ kð Þ tk
1þ tk

X̃Gk þk
X
k V

1
1þ tk V

X̃Gk V ẽGk VGk ¼ 0:

Finally, we work in shares of total consumption, dividing the equalities by total consumption.
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In practice, the minimum of the squares of the three left-hand sides of the Diamond conditions does nevertheless
differ from zero. This gives a unique set of values for the ratios (αcρc/λ). If one normalizes the sum of αcρc over the
deciles to unity, and compute λ accordingly,9 one obtains

k ̂ ¼ 1:11;

and most of the weight is on the fourth and fifth deciles

a1q1 ¼ 0:03 a4q4 ¼ 0:54 a5q5 ¼ 0:43:

The left-hand sides of the Diamond conditions (6) are respectively equal to 0.003 for the exempted goods, −0.007 for
domestic fuel (the only good taxed at the reduced rate), and −0.0004 for goods taxed at the standard rate. These numbers are
proportional, up to a positive factor, to the derivatives of the social objective with respect to the corresponding tax rates, such
as given by (6). That is, they are equal to the social values ofmarginal changes of the tax rates,measured as tenths of aggregate
consumption. For instance, increasing by 1 point the standard rate, from 17.5% to 18.5%, would induce a social loss of
0.0004×0.01×10=0.004%of aggregate consumption. TheDiamond first-order conditions are therefore close to be satisfied.

6.2. Is the grouping of commodities optimal?

Fig. 2 plots the representative points (εg, ag/λ−bg) of eighteen10 commodities, and the half lines

a
k
� b ¼ 1� t

1þ t
e;

corresponding to the current tax rates t. The parameters a, b and ε are set at their current observed values.11

In fact two points are drawn for each good. The one in large bold type corresponds to the implicit social weights
computed above, while the other one, in small italic type, represents the good location for a Rawlsian government
which would put all the social weight on the first population decile.

Under single peakedness, optimality requires that the large bold representative points of all the exempted goods be
above the reduced rate half line, the point associated with ‘Domestic Fuels’ (the only good supporting the reduced rate)
be between the standard rate line and the horizontal, and all the goods bearing the standard rate be below the reduced
rate half line.

Excluding the goods subject to excise taxes, 87% of total consumption expenditures are concerned. Of these, 67%
appear to be taxed consistently with the optimality criterion.12 The main departures from optimality are the following.
A number of exempted goods should be taxed at the standard rate: ‘Dairy products’, ‘Fruits and Vegetables’, and ‘Other
non-VAT foods’. ‘Food out’ and ‘Public transport’, currently taxed at the standard rate, should be exempted.13 At least
in the UK, if not in France, restaurants appear to be too heavily taxed.

If the government wants to raise more money by creating a larger tax rate, ‘Adult Clothing’ and ‘Leisure Goods’
seem to be good candidates to enter its basis.

Four specific categories appear to be taxed more heavily than the redistributive social objective would recommend:
‘Domestic Fuels’, ‘Beer’, ‘Petrol and Diesel’ and ‘Tobacco’. This may be justified on public health or environmental
9 This means that the social welfare function is normalized so that an increase of aggregate consumption of dC, uniformly distributed, gives dC/10
to each decile and therefore, for this choice of normalization, increases social welfare by dC/10. Thus, social welfare is implicitly measured in tenths
of aggregate consumption.
10 In the interest of readability, ‘Wine and spirits’ do not appear on the graph: its own price elasticity is (-)3, much larger than that of the other
goods.
11 Theory would require to compute the optimal putative tax rate for each considered commodity. For lack of better information, we assume that
the observed elasticities are good enough approximations to be used to compute the graph coordinates. We have done some experimentation with
more sophisticated computations for b and ε. In particular we have looked at cases where all the elasticities are constant, equal to their observed
values, where demand functions are linear, and at a couple of other variants, including QAIDS which underlies the empirical estimation. The results
are quite sensitive to the specification of the shape of the demand functions: in particular single peakedness is easily lost, and the Lagrangian may be
locally convex at the observed point. More work is needed in this area.
12 It is difficult to provide a statistical assessment of this result, given the possible measurement errors on elasticities. If one chooses, as a simple
benchmark, the case in which the representative point of each class of goods were drawn independently uniformly in the half plan, given the half
lines associated with each tax rate, then only 43% of the 87% consumption expenditures taken into account would be taxed according to the theory.
This can be seen as a weak validation of the theory.
13 Both ‘Food out’ and ‘Public transport’ are complementary with labor supply.
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protection grounds.14 The differences are large: for instance beer would be either exempted or taxed at a lower rate, and
‘Domestic fuels’ would be strongly subsidized.15

Going to a Rawlsian government allows us to look at the impact of the redistributive stance of the government. This
tends to spread out the figure. A quarter of consumption (‘Petrol and Diesel’, ‘Food out’, ‘Adult Clothing’ and ‘Leisure
Goods’) are taxed more heavily, a third (‘Household Goods and Services‘, ‘Leisure Services’ and ‘Tobacco’) are
unaffected, and the remainder, approximately 45% of consumption, gets a reduced rate or, more often a subsidy.

This rather surprising outcome indicates that differences in the consumption structure of the various deciles are large
enough to make the optimal indirect tax rates vary substantially with the redistributive objective. In particular, the fact
that consumers of the first decile devote a low fraction of their income to ‘Food out’, relative to the fourth and fifth
deciles, implies that a Rawlsian social planner would heavily tax both restaurants and fast foods.

All things considered, these results look plausible and may be worth independent confirmation and further refinement.

Main proof

Proof of Theorem 1. There is no vector space structure on the variables G, and therefore no way to differentiate with
respect toG. To put a differentiability structure on the set of variables we abstract from the economic context and do as if it
were possible to tax parts of good g at the various available rates. Let πk (g) be the fraction of good g subject to rate tk,
whereπ=[πk (g), k=1,…,K], is a vector of positive measurable functions, defined onG, of square integrable with respect
to the measure µ(g)dg. The program (3) then becomes

max
t;p

XK
k¼1

R
pk gð ÞVg tkð Þμ gð Þdg

XK
k¼1

R
pk gð ÞtkXg tkð Þμ gð Þdg ¼ R

pk :ð Þz0; for all k ¼ 1; N K; and
XK
k¼1

pk :ð Þ ¼ 1:

8>>>>>>>>><
>>>>>>>>>:

ð30Þ
14 As suggested by a referee, it is likely that the results of Sandmo (1975) and Kopczuk (2003) extend to the present framework: an externality of
the atmospheric type, caused by the total consumption of the polluting good, would be corrected by a Pigovian tax bearing only on this good.
15 ‘Wine and spirits’ is subject to a 55% rate, but it should support a 36% rate, according to our computation.
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where the variables maximized upon are (t, π) in ℝK ×L2
K (G) instead of (t, G). The only solutions of economic

relevance are such that the functions π take only two values, either 0 or 1. An adaptation of the Lagrangian approach can
be used to derive necessary conditions satisfied by a solution to the program (Theorem 7.3 of Jahn (2004)). Both the
function to be maximized and the government revenue are Fréchet differentiable with respect to the variables (t, π). Let
λ, ρ=(ρk), and σ, respectively in ℝ, L2

K (G) and L2(G), be the multipliers associated with the government budget
constraint, the positivity constraints and the normalization constraints. ρ is non-negative and the solution is a local
extremum of

XK
k¼1

Z
pk gð ÞVg tkð Þ þ kpk gð ÞtkXg tkð Þ þ pk gð Þqk gð Þ � pk gð Þr gð Þ� 	

μ gð Þdg;

with Z
pk gð Þqk gð Þμ gð Þdg ¼ 0 for all k;

and Z
1�

XK
k¼1

pk gð Þ
" #

r gð Þμ gð Þdg ¼ 0:

Taking the Fréchet derivative with respect to πk yields, for µ almost all g,

Vg tkð Þ þ ktkXg tkð Þ þ qk gð Þ � r gð Þ ¼ 0;

with ρk (g)≥0, πk (g)≥0, and ρk (g)πk (g)=0. It follows that a necessary condition for optimality is

r gð Þ ¼ max
k¼1; N ;K

Vg tkð Þ þ ktkXg tkð Þ� 	
;

and that πS (g) is equal to zero whenever

r gð ÞN Vg tSð Þ þ ktS Xg tSð Þ� 	
:

There are typically several optima, and there is always an economically meaningful solution in the set of optima, i.e.
one solution such that πk (g) is everywhere either equal to 0 or to 1. This relies on the assumption that the space of
commodities has no atoms, and directly follows from the following lemma:

Lemma 2. LetΓ be a subset of goods such that, for k=1,…, n, there are real µ integrable functions ak and βk defined onΓ,
verifying σ(g)=αk (g)+βk (g). Consider measurable functions from Γ into [0, 1] such that πk (g), πk (g)≥0, Σkπk(g)=1.

Assume that the measure µ has no atoms on Γ. Then there exists a partition (Γk)k= 1,…,n of Γ such that:

A ¼
Z
C

X
k

pk gð Þak gð Þμ gð Þdg ¼
X
k

Z
Ck

ak gð Þμ gð Þdg;

and

B ¼
Z
C

X
k

pk gð Þbk gð Þμ gð Þdg ¼
X
k

Z
Ck

bk gð Þμ gð Þdg:

Proof. For every g, let ᾱ (g)=maxk αk (g) and α(g)=mink αk (g). Note also k̄ (g) the smallest k such that ᾱ (g)=αk (g),
and similarly k(g) for the minimum. Of course:

A
P ¼

Z
C
a
P
gð Þμ gð ÞdgzAzA

P
¼
Z
C
a
P
gð Þμ gð Þdg:
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The non-negative integral ∫γ (ᾱ(g)−α(g))µ(g)dg, where γ is a measurable subset of Γ, defines a non-negative atomless
measure onΓ. ByLyapunov (see e.g.Hildenbrand, 1974, p.45), its range is the convex interval [0, Ā−A]. There is therefore a
set γ such that

A� A
P
¼
Z
g

a
P
gð Þ � a

P
gð Þ


 �
μ gð Þdg:

For all k, define

Gk ¼ gaGj gag and k ¼ k
P

gð Þ
� 


or ggg and k ¼ k
P

gð Þ

 �� �

:

By construction the Gk's form a partition of G, andX
k

Z
Gk

ak gð Þμ gð Þdg ¼
Z
g
a
P
gð Þμ gð Þdg þ

Z
G 5g

a
P

gð Þμ gð Þdg ¼ A:

The second equality of the lemma is an immediate consequence of the equality α(g)=σ(g)−β (g).
The result follows from applying the lemma successively to all the subsets of tax rates χ=(k1,…,kn) for which there

exists a non-negligible set of goods such that Lk is constant on χ, and strictly smaller than Lk1 for k not in χ. The
construction yields the same value of welfare and the same government receipts.

This completes the proof of the Theorem. Program (3) has more restrictive constraints than Program (3′) and we
have exhibited an admissible allocation for (3) that maximizes (3′). It satisfies the necessary conditions for optimality:

Lg tkð Þ ¼ max
h¼1; N ;K

Lg thð Þ:

Appendix. Supplementary proofs and data

Supplementary proofs and data associated with this article can be found, in the online version, at doi:10.1016/j.
jpubeco.2008.01.010.
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