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This paper studies relationships between the local determinacy of a stationary
equilibrium in the perfect foresight dynamics, and its local stability in dynamics
arising from econometric learning procedures. Attention is focused on linear scalar
economies where agents forecast only one period ahead, and with an arbitrary, but
fixed, number of predetermined variables. In such a framework, it is well known
that there are no clear links between the determinacy of the stationary state in the
perfect foresight dynamics on the levels of the state variable, and its stability under
learning. The paper emphasizes, however, that this is not the right perfect foresight
dynamics to look at whenever agents try to learn the coefficients of the perfect
foresight dynamics restricted to an eigenspace of lower dimension. Indeed the paper
introduces a growth rate perfect foresight dynamics on these coefficients and proves
equivalence between determinacy in that dynamics and stability under learning
provided that a simple sign condition is satisfied. Journal of Economic Literature
Classification Numbers: E32, D83. � 2002 Elsevier Science
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1. INTRODUCTION

It is a commonplace knowledge that dynamic models with rational
expectations exhibit a multiplicity of equilibrium paths. Several alternative
devices have consequently been proposed for the selection of the solutions
on which attention should be focused in practice. This paper is an attempt
to confront two among these, the determinacy of an equilibrium and its
stability in a learning dynamics. This purpose is related to Guesnerie's [9]
dynamic equivalence principle which claims that local determinacy should
be equivalent to local stability under learning provided that agents form
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``reasonably'' their forecasts (see also Lucas [13]), and temporary equi-
librium literature provides indeed many examples of reasonable learning
rules (Grandmont and Laroque [6], Grandmont and Laroque [7] or
Guesnerie and Woodford [10]). Nevertheless, the equivalence principle
fails when agents employ recursive (econometric) learning rules (Duffy [1],
Evans and Honkapohja [3], Grandmont [5] or Grandmont and Laroque
[8]) such as the ordinary least squares algorithm (Marcet and Sargent
[14]), the Robbins and Monro [17] scheme (Woodford [18]), or the
gradient one (Evans and Honkapohja [4]). Most of these are studied in
Ljung and Soderstro� m [12]. Our aim is to show that the determinacy
criterion is not applied in a suitable way in these cases.

The intuition is easy to grasp in a linear one step forward looking
economy where the current (univariate) state depends on L=1 predeter-
mined variable (as, e.g., Reichlin [16]). In such a model, the dynamics
with perfect foresight is governed by two (local perfect foresight eigen-
values) growth rates *1 and *2 (with |*1|<|*2 | ) in the immediate vicinity
of a stationary state x� (where the state variable is equal to x� at all times).
Usually the determinacy criterion is applied to x� in the perfect foresight
dynamics on the levels of the state variable, whereas agents try to estimate
*1 and *2 through a standard econometric procedure, the asymptotic
behavior of which can be approximated by suitable continuous differential
equations involving the expectational stability criterion (Evans [2]). It
turns out that agents discover the growth rate of least modulus *1 in such
a specification, so that the learning dynamics may be stable ( |*1|<1) even
if x� is locally indeterminate ( |*2 |<1). One may wonder, however, whether
this is the right perfect foresight dynamics to look at. The main innovation
of the paper is indeed to apply the determinacy criterion to the fixed points
in the learning dynamics (*1 and *2) by defining a perfect foresight
dynamics of growth rates whose stationary equilibria are the perfect
foresight growth rates. The outcome is particularly appealing within this
simple economy (with only one predetermined variable) since a perfect
foresight growth rate is stable under learning if and only if it is determinate
in the perfect foresight dynamics of growth rates so defined.

In the more general framework where the current state depends on
expectations of the next state and on an arbitrary, but fixed, number L�0
of predetermined variables, the dynamics with perfect foresight involves
(L+1) local perfect foresight eigenvalues *1 , ..., *L+1 (with |*1|< } } } <
|*L+1| ) in the neighborhood of x� . In that case, agents are supposed to try
to learn the L coefficients of the linear perfect foresight dynamics restricted
to a L-dimensional eigenspace spanned by L eigenvectors among those
associated with the (L+1) local eigenvalues. When *L+1 and �L+1

i=1 *i have
the same sign (which must be the case if L�1), the eigenspace that is
locally stable in the learning dynamics corresponds to the eigenvalues *1 , ..., *L
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of lowest modulus. Hence x� is locally stable in the learning dynamics if
and only if |*L |<1, which encompasses both the saddle point determinate
configuration (1<|*L+1| ) and the indeterminate configuration (*L+1|<1),
for the perfect foresight dynamics. When *L+1 and �L+1

i=1 *i have opposite
signs, the eigenspace that is locally stable under learning always includes
the eigenvector associated with *L+1 , and the learning dynamics will be
stable if and only if |*L+1|<1, i.e., in the locally indeterminate configura-
tion for the perfect foresight dynamics. These results imply again that the
learning dynamics may be stable even if x� is locally indeterminate in the
perfect foresight dynamics on the levels of the state variable. Nevertheless
one should instead look at a new perfect foresight dynamics, the extended
growth rate perfect foresight dynamics, defined on the L-dimensional vec-
tors of the coefficients that agents try to estimate. The issue is whether
there is a neater relation between local stability under the considered class
of learning algorithms, and local determinacy in this extended growth rate
perfect foresight dynamics, of a particular eigenspace or of the L-dimen-
sional vector of coefficients associated to it. The outcome here is still very
simple since the L-dimensional eigenspace corresponding to the L perfect
foresight growth rates *1 , ..., *L of lowest modulus, is the only one to be
locally determinate. Therefore, if *L+1 and �L+1

i=1 *i have the same sign (a
condition that may be related to the one sided sign condition for stability
of differential equations, and that is always satisfied when L=1), one gets
indeed equivalence between the local determinacy of a particular
eigenspace, or of the associate vector, and its local stability under learning.
However this equivalence fails if *L+1 and �L+1

i=1 * i have opposite signs.
In the paper, we first present the simple case where L�1 (Section 2),

and then we turn to the more general one where L is arbitrary (Section 3).
The conclusion (Section 4) will open a few leads about possible extensions.

2. A PRELIMINARY EXAMPLE

We shall suppose that the current state is a real number xt linked with
the forecast of the next state xe

t+1 and with the predetermined state xt&1

through the following map,

#xe
t+1+xt+$xt&1=0, (1)

where # (with #{0, i.e., expectations matter) and $ represent the relative
weights of future and past respectively. This equation stands for a first
order approximation of a temporary equilibrium dynamics in a small
neighborhood of a locally unique stationary state (x� #0). We first focus
interest on the relationships between the usual concept of the local determinacy
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of x� , in the perfect foresight dynamics generated by (1) with xe
t+1=xt+1 ,

namely,

#xt+1+xt+$xt&1=0 (2)

and its stability under learning. This concept of local determinacy is
entirely governed by the perfect foresight roots *1 and *2 of the charac-
teristic polynomial P(z)=#z2+z+$ corresponding to (2). We let *1 and
*2 be real, with |*1|<|*2 |. If |*1|>1, then x� is source determinate. If
|*1|<1<|*2 |, then it is saddle determinate and for every arbitrarily small
neighborhood V(x� ) of x� , there is a unique equilibrium (xt) satisfying (2)
and staying in V(x� ) at all times, for any initial condition x&1 close to x� . If
|*2 |<1, then x� is locally indeterminate. In that case, for any arbitrarily small
neighborhood V(x� ) of x� , and any initial condition x&1 close to x� , there are
infinitely many perfect foresight equilibria staying in V(x� ) at all times.

One can interpret perfect foresight equilibria as a situation where traders
believe that the state variable behavior is governed by

xt=;xt&1 (3)

for every xt&1 # V(x� ) and every t�0, and set the growth rate ; equal to
*1 or *2 . Indeed agents are supposed to form their expectations by iterating
twice (3) at time t, i.e., xe

t+1=;2xt&1 (note that they do not condition on
xt), so that the actual dynamics comes by inserting xe

t+1 into (1):

xt=&(#;2+$) xt&1 . (4)

Their belief is self-fulfilling for ;=*i (i=1, 2) since then &(#;2+$) equals
*i by definition. One needs the additional condition |*i |<1 to get a locally
feasible equilibrium that stays near the stationary state x� at all times. Thus
the belief ;=*1 is the only one to be self-fulfilling and locally feasible when
x� is saddle determinate. Both beliefs ;=*1 and ;=*2 are self-fulfilling and
locally feasible in the indeterminate case. None of these self-fulfilling beliefs
is locally feasible when x� is source determinate.

According to the above interpretation, perfect foresight requires that
agents coordinate their expectations on some self-fulfilling belief ;=*i

(i=1, 2). This is a demanding hypothesis in a decentralized framework
where agents may even not know the dynamic laws of their environment,
summarized by *1 and *2 . It is thus natural to analyze how agents may
in fact discover asymptotically *1 and *2 through some learning process,
where they would formulate their expectations at each date t from beliefs
(3) with ;=;(t) and would revise them at the beginning of period (t+1)
as a function of the actually observed forecasting error (xt&;(t) xt&1) in
period t. Here we shall consider the class of econometric learning algo-
rithms whose recursive form is
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;(t+1)=;(t)+:(t) h(t) xt&1[xt&;(t) xt&1], (5)

xt=&(#;(t)2+$) xt&1 , (6)

where :(t)>0 tends toward 0 as t becomes large, and h(t) is a function of
past history of the state variable. One must impose that h(t)>0 for if
agents overestimate the actual growth rate, i.e., xt<;(t) xt&1 , then they set
;(t+1)<;(t) in (5). A particular case of this formulation is the weighted
least-squares learning scheme (Marcet and Sargent [14]) where :(t)=#t�t
and h(t) = ((#t x2

t&1+ } } } +#0 x2
&1)�t)&1 with a forgetting factor #s � 0

(s=0, ..., t) that allows us to weight recent observations more heavily
(#s=1 for the ordinary least-squares scheme).

If agents set ;(t)=*i in (5), then their belief is self-fulfilling, i.e.,
xt = *i xt&1 in (6), and they cease to revise their estimates ;(t) in (5), i.e.,
;(t+1)=;(t)=*i , thus learning the whole trajectory xt=*i xt&1 . Although
the dynamics (5)�(6) seems, at first sight, complex to analyze because of the
coupling between growth rates and levels of the state variable, it can be
shown (Ljung's [11]) that, provided that |*i |<1 (i.e., the self-fulfilling belief
;=*i in (3) is locally feasible) and :(t) goes to 0 but not too fast, local
asymptotic stability of ;(t)=*i and of xt=*i xt&1 in (5)�(6) are equivalent
to local stability of ;(t)=*i in the simpler associated differential equation

d;({)
d{

=,� [&(#;({)2+$)&;({)], (7)

where { is a fictitious scale of time related to t, and ,� assumed to be the
limit of some statistics of the process involving :(t), h(t) and xt .

2 Provided
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2 The sufficient conditions for this result are |*i |<1, the gain :(t) tends to 0 but the series
��

t=1 :(t) diverge to +�, and a major condition is that the limit ,� exists. If :(t)=1�t (which
satisfies both conditions above), then ,� is defined as:

,� = lim
t � +�

1
t

�
t

s=1

hs x2
s&1 .

See Ljung [11] (conditions C3, C5, C6) for more general sequences of gains. Under these
assumptions, the weighted least squares dynamics (whose recursive form is given in (2.15) of
Ljung and Soderstro� m (12]) is governed in the long run by (see (5) in Marcet and Sargent [14])

d;({)
d{

=
Mx

R({)
[&(#;({)2+$)&;({)], (8)

and
dR({)

d{
=Mx&R({), (9)

where R(t)=1�h(t)>0 and Mx>0 (Marcet and Sargent [14], Section 2). Since R(t) tends to
Mx in (9), one can rewrite (8) as (7) with ,� =Mx �Mx=1>0, so that stability of (*i , Mx) in
(8)�(9) is equivalent to stability of *i in (10) for this class of learning schemes, as is asserted
in (6) of Marcet and Sargent [14].



that ,� >0 (a condition that should be thought as a consistency require-
ment in the learning process), the root *i will be locally stable for (7) if and
only if it is locally stable for the following expectational stability differential
equation (Evans [2])

d;({)
d{

=&(#;({)2+$)&;({) (10)

which makes the revision of growth rate estimates to depend directly on
the discrepancy between the actual growth rate (&(#;({)2+$)) and the
initial guess ;({). The next lemma states the properties of (10) in the
immediate vicinity of its rest points *1 and *2 .

Lemma 1. Let #{0. The low perfect foresight root *1 is locally stable
while the high one *2 is locally unstable in the dynamics with learning (10).

Proof. Local stability of *i (i=1, 2) in (10) is obtained if and only if the
first derivative of (&(#;2+$))&;) with respect to ; is negative for ;=*i ,
namely,

2*i

(*1+*2)
&1<0 (11)

since (*1+*2)#&1�#. If *i=*1 , then (11) � *1 �*2<1, which is always
satisfied. Otherwise, if *i=*2>0, then (11) � *2<*1 , which never holds
true. If *i=*2<0, then (11) � *2<*1 , which is impossible too. K

Thus the equivalence principle does not hold under the class of learning
processes considered here, since agents then learn always the root *1 of
lowest modulus, and never discover *2 . Indeed convergence of the trajec-
tories (xt) to the stationary state value x� imposes |*1|<1, but this is com-
patible with both the saddle determinate configuration (1<|*2 | ) and with
the indeterminate case (|*2 |<1). We argue in this paper that this failure is
in large part due to the fact that the usual notion of determinacy, as
recalled above, is stated in terms of the perfect foresight dynamics of the
levels of the state variable xt , while in fact traders try to discover some
growth rate ;=*i (i=1, 2). We introduce now a new perfect foresight
dynamics of growth rates, which is obtained by assuming that the traders'
belief about the law of motion of the state variable fits (3) with ;=;(t),

xt=;(t) xt&1 , (12)

for every xt&1 # V(x� ) and every t�0. Perfect foresight of the state variable
x induces a dynamics of the growth rate ;(t) whose fixed points are the
roots *1 and *2 . The issue is to study whether there exist links between
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stability of these roots under learning and their determinacy properties in
such a growth rate perfect foresight dynamics. It turns out that, in fact, a
perfect foresight growth rate is locally stable under learning if and only if
it is locally determinate in the growth rate perfect foresight dynamics.

Since (12) holds for every t�0, traders' expectations are:

xe
t =;(t) xt&1 and xe

t+1=;(t+1) xe
t =;(t+1) ;(t) xt&1 .

In the perfect foresight dynamics (2), these forecasts are equal to xt and
xt+1 , respectively. One can consequently rewrite (2) as a recursive equa-
tion of growth rates only.

Definition 2. Let #{0. Assume also that (12) holds for every
xt&1 # V(x� ) and every t�0. The growth rate perfect foresight dynamics is
a sequence of growth rates (;(t)) such that:

#;(t+1) ;(t)+;(t)+$=0. (13)

Taking ;(t)=;(t+1) in (13) shows that the fixed points of (13) are *1

and *2 . This dynamics is well defined if and only if ;(t){0 in each period.
Therefore it must be the case that ;(t){&$ if ${0 (otherwise ;(t+1)
=0), in which case (13) does not define a global dynamics but is yet well
defined around *1 and *2 (both differ from &$). If $=0, then *1=0
(since then *1*2 #&$�#=0 and |*1|<|*2 | ) so that the dynamics is not well
defined locally, but one may say that *1 is unstable while *2 is stable because
either ;(t)=*1 at all times, or ;(t)=&1�#=*2 {0 if ;(t){0 at some date.

The dynamics (13) has the classical one-step forward looking structure
without predetermined variables (the current rate ;(t) is not given at outset
of t). So its fixed points are locally determinate if and only if they are
locally unstable in (13), which allows us to state our equivalence result.

Proposition 3. Let #{0. The low perfect foresight root *1 is locally
determinate in the growth rate perfect foresight dynamics (13) while the high
one *2 is locally indeterminate in the same dynamics. Therefore, in view of
Lemma 1, the root *i (i=1, 2) is locally stable in the learning dynamics (10)
if and only if it is locally determinate in the growth rate perfect foresight
dynamics (13).

Proof. The growth rate perfect foresight dynamics in the neighborhood
of *i (i=1, 2) is obtained by linearizing (13) at this point:

#*i (;(t+1)&*i)+(#*i+1)(;(t)&*i)=0.
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The condition for *i to be locally unstable in (13) is:

}#*i+1
#*i }= }*i&(*1+*2)

*i }>1. (14)

If *i=*1 , then (14) � |*2 �*1|>1, which always holds. If * i=*2 , then
(14) � |*1 �*2 |>1, which never holds. K

3. ON THE DYNAMIC EQUIVALENCE PRINCIPLE

We now deal with economies where the current state depends on the
forecast of the next state but also on an arbitrary number L of predeter-
mined variables through the following map,

#xe
t+1+xt+ :

L

l=1

$lxt&l=0, (15)

where the parameter $l (1�l�L) represents the relative contribution to xt

of the predetermined state xt&l at t. We shall proceed here as in the pre-
vious section, namely we shall first state the lack of link between deter-
minacy of the stationary state (x� #0) in the perfect foresight dynamics on
the levels of the state variable x, and its stability under learning when
agents try to estimate how the state of period t is related to the L past
states xt&1 , ..., xt&L , i.e., try to discover the L coefficients of the linear per-
fect foresight dynamics restricted to an L-dimensional eigenspace. Then we
shall define the perfect foresight dynamics on the L-dimensional vectors of
these coefficients. Thus the issue will be to study whether there is a neater
relationship between determinacy and stability under learning with this
new perfect foresight dynamics.

3.1. State Variable Perfect Foresight Dynamics

The usual concept of local determinacy of the stationary state x� is
defined from the perfect foresight dynamics on the levels of the state
variable x obtained by setting xe

t+1=xt+1 in (15), namely:

#xt+1+xt+ :
L

l=1

$lxt&l=0. (16)

Indeed this concept only relies on the (L+1) perfect foresight roots
*1 , ..., *L+1 of the characteristic polynomial P(z)=#zL+1+zL+�L

l=1

$lzL&l corresponding to (16). Let *i (i=1, ..., L+1) be real, with |*1|<|*2|<
} } } <|*L+1|. If |*L |>1, then x� is source determinate. If |*L |<1<|*L+1|,
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then x� is saddle determinate and for every arbitrarily small neighborhood
V(x� ) of x� , and for every initial condition (x&1 , ..., x&L) close to (x� , ..., x� ),
there is a unique perfect foresight equilibrium, i.e., a unique sequence (xt)
that satisfies (16) and stays in V(x� ) at all times t�0. If |*L+1|<1, then x�
is indeterminate, i.e., for every arbitrarily small neighborhood V(x� ) of x� ,
and for every initial condition (x&1 , ..., x&L) close to (x� , ..., x� ), there are
infinitely many perfect foresight equilibria (xt) that stay in V(x� ) at all dates
t�0.

Here again one can interpret perfect foresight as a situation where
traders believe that the law of motion of the system is governed by

xt= :
L

l=1

;lxt&l (17)

for every xt&l # V(x� ) and every t�0, and where this belief is self-fulfilling.
In that case, the expectation is formed at date t by iterating twice (17):

xe
t+1= :

L

l=1

; lxt+1&l= :
L&1

l=1

(;1;l+;l+1) xx&l+;1;Lxt&L .

This forecast, once reintroduced into (15), generates the actual dynamics:

xt=& :
L&1

l=1

[#(;1;l+;l+1)+$ l] xt&l&[#(;1;L)+$L] xt&L . (18)

Hence the initial belief (17) is self-fulfilling if and only if it coincides with
(18), namely,

;l=&[#(;1; l+;l+1)+$l] for l=1, ..., L (19)

with ;L+1=0. Vectors solutions to (19) will be called stationary extended
growth rates (henceforth EGR(L)), and denoted ;� =(;� 1 , ..., ;� L). Intuitively
the self-fulfilling belief (17) with ;#(;1 , ..., ;L)=;� should correspond to
the perfect foresight dynamics (16) restricted to an invariant subspace W of
dimension L, i.e., to an eigenspace spanned by L eigenvectors among the
(L+1) eigenvectors ui associated with the eigenvalues *i (i=1, ..., L+1).
There are clearly (L+1) such invariant L-dimensional eigenspaces Wk

(each Wk is spanned by all the eigenvectors but uk (k=1, ..., L+1)). Thus
one should expect (19) to have (L+1) distinct vector solutions ;� k, where
;� k corresponds to the perfect foresight dynamics restricted to Wk . The next
lemma makes precise this intuition and gives the expression of ;� k in terms
of the perfect foresight roots *i (i=1, ..., L+1).
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Lemma 4. Assume that the characteristic polynomial P corresponding
to the (L+1)-dimensional difference equation (16) admits (L+1) real and
distinct roots *k , with |*1|< } } } <|*L+1|. Let the (L+1)_1 eigenvector
uk , 1�k�L+1, be associated with *k . Finally let Wk �IRL, 1�k�L+1,
be the eigensubspace spanned by all the eigenvectors except uk . The perfect
foresight dynamics of the state variable restricted to Wk writes

xt= :
L

l=1

;� k
l xt&l ,

where the lth entry ;� k
l of the stationary EGR(L) ;� k is:

;� k
l =(&1) l+1 :

1�i1< } } } <il

(*i1
...*il

) for all iz {k, z=1, ..., l.

The (L+1) stationary EGR(L) ;� k are the solutions of the equations (19).

Proof. See in Appendix 5.1. K

Of course, for the self-fulfilling belief (17) with ;� k to be locally feasible,
one must also require that the perfect foresight dynamics of the state
variable x in Wk be stable (all the perfect foresight roots different from *k

must be stable, i.e., |*i |<1 for i{k). Therefore the self-fulfilling belief
;=;� k with k=L+1 is the only one to be locally feasible if x� is saddle
determinate in the dynamics (16). Any self-fulfilling belief ;� k with
k=1, ..., L+1 is locally feasible if x� is indeterminate in this dynamics, and
none of these self-fulfilling beliefs is locally feasible when x� is source deter-
minate.

3.2. Dynamics with Learning

Even if agents are initially aware of the (L+1) stationary EGR(L) to the
model (15), they have to coordinate their behavior on one among them,
which may be quite demanding in a decentralized framework. In this section
we shall instead assume that agents need learning how the state variable
behaves in V(x� ) through a process where they form at the outset of period t
their forecasts from the law (17) with some L-dimensional vector of
estimates ;(t)=(;1 (t), ...;L (t))T and revise these estimates at the outset of
period (t+1) once the forecasting error (xt&;(t)T xt&1) is actually
observed (here xt&1 stands for the vector of lagged variables (xt&1 , ..., xt&L)T),
according to the class of recursive learning schemes:

;(t+1)=;(t)+:(t) H(t) xt&1 (xt&;(t)T xt&1), (20)

xt=& :
L

l=1

[#(;1 (t) ;l (t)+;l+1 (t))+$l] xt&l #0(;(t))T xt&1 . (21)
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Equation (21) is (18) with ;l is replaced by ;l (t) (for l=1, ..., L), and with
the convention that ;L+1 (t)=0 (hence the lth component of the L_1 vec-
tor 0(;(t)) is the actual weight of xt&l in (21)). As in (5), the sequence of
scalars :(t)>0 in (20) is still assumed to tend toward 0 as time passes, and
H(t) is now an L_L matrix related to past history of the economic system.
The rule (20) is general enough to encompass, e.g., the weighted least-
squares schemes where H(t)=((#t xt&1xT

t&1+ } } } +#0x&1xT
&1)�t)&1 and

:(t)=#t �t (#t is the weight of period t observations in the least square
estimator).

If agents set ;(t)=;� k in (20) for some k (k=1, ..., L+1) at date t, then
xt=(;� k)T xt&1 in (21). Therefore they do not revise their estimates, i.e.,
they set ;(t+1)=;(t)=;� k in (20), thus learning the law of motion of the
state variable restricted to Wk . The dynamics (20)�(21) is, however, com-
plex to analyze because of the coupling between components of ;(t) and
levels of the state variable. Here again, as in Section 2, we may appeal to
the existing theory on the convergence of learning algorithms (Ljung's
[11]) to assert that local asymptotic stability in (20)�(21) of some par-
ticular ;� k corresponding to a locally stable (feasible) dynamics in Wk is
equivalent, provided that :(t) goes to 0 but not to fast, to its local stability
in the associated ordinary differential equation3

;4 ({)=8� (0(;({))&;({)), (22)

where { is a fictitious continuous scale of time, and where the L_L matrix
8� is assumed to be the limit of some statistics involving :(t), H(t) and the
state variable x. We need here additional assumptions to be able to reduce
the study of the stability in (22) to the differential expectational stability
criterion (Evans [2]):

;4 ({)=0(;({))&;({). (23)

An intuition for the kind of assumptions needed to ensure local equivalence
between (22) and (23) is easy to grasp by considering Jacobian matrices
8� (D0(;� k)&IL) and (D0(;� k)&IL) that govern the dynamics near ;� k in
(22) and (23), respectively. One can show that (D0(;� k)&IL) has distinct
real eigenvalues under the assumption of distinct real eigenvalues *i

(i=1, ..., L+1) (see Appendix 5.2). It is therefore diagonalizable. In the
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3 This result applies if ;� k corresponds to a locally feasible equilibrium (i.e., |*i |<1 for
i=1, ..., L+1 but i{k), and if :(t) tends to 0 but ��

t=1 :(t) diverges to +�. For :(t)=1�t,
8� is defined as:

8� # lim
t � +�

1
t

:

t

s=1

H(s) xs&1xT
s&1 .

See again Ljung [11] (conditions C3, C5, C6) for more general sequences of gains.



corresponding basis, one should expect the asymptotic learning dynamics
(22) to be consistent with that structure and to involve correcting
each ``diagonal error'' along the direction of the corresponding eigenvec-
tor of (D0(;� k)&IL) with a positive weight. In other words, both 8�
and (D0(;� k)&IL) should be diagonalizable in the same basis, and the
diagonalized matrix 8� should have only positive entries on its diagonal. Local
stability of (22) and (23) are clearly equivalent in such circumstances,
which are in principle more general than usual least-squares schemes where
8� is in fact the identity matrix.4 Of course the dynamics (23) will be locally
stable around ;� k if and only if the real part of all the eigenvalues of
(D0(;� k)&IL).

Theorem 5. Let #{0. Assume that beliefs fit (17) for every xt&l in V(x� )
and every t�0. Then there exists a unique stationary EGR(L) ;� k which is
locally stable in the learning dynamics (23). It governs the behavior of the
state variable restricted to the L-dimensional eigensubspace Wk of the state
variable perfect foresight dynamics (16) spanned by all the eigenvectors
except uk where uk is associated with the perfect foresight root *k which
satisfies:

*k< :
L+1

i=1

*i=max
i {*i< :

L+1

i=1

* i= .

Therefore the stationary EGR(L) ;� L+1 that governs the perfect foresight
dynamics (16) restricted to the L-dimensional eigenspace associated with the
L eigenvalues *1 , ..., *L of lowest modulus, is the unique stationary EGR(L)
to be locally stable in the learning dynamics (23) if *L+1 �L+1

i=1 *i is positive.
Otherwise, i. e., if *L+1 �L+1

i=1 * i is negative, then the stationary EGR(L) that
is locally stable in the learning dynamics (23) governs the perfect foresight
dynamics (16) restricted to an L-dimensional eigenspace that contains in par-
ticular the eigenvector uL+1 associated to the eigenvalue of largest modulus
*L+1 .
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4 Under the assumptions given in footnote 3, the long run dynamics of weighted least
squares is governed by (5) in Marcet and Sargent [14],

d;({)
d{

=R({)&1 Mx[&(;({))&;({)], (24)

dR({)
d{

=Mx&R({), (25)

where R(t)=H(t)&1 and Mx is a (positive definite) second moment matrix (Marcet and
Sargent [14], Section 2). Note that R(t) tends to Mx in (25), so that (24) expresses as (22)
in the long run, with 8� =M&1

x Mx=IL (see also (6) in Marcet and Sargent (14]).



Proof. See in Appendix 5.2. K

This result implies again that there are no simple links between the
determinacy of x� in the perfect foresight dynamics (16) and its stability
under learning. In the case where *L+1 and �L+1

i=1 *i have the same sign
(the reader will note that this condition is always met in the case of a single
predetermined variable L�1 considered in the previous section), con-
vergence of the state variable xt to x� in the learning dynamics requires also
that |*L |<1, but this condition is compatible with both the saddle deter-
minate configuration 1<|*L+1| and the indeterminate case |*L+1|<1. On
the contrary, when *L+1 and �L+1

i=1 *i have not the same sign (which may
occur only if L�2), convergence of xt to x� in the learning dynamics
requires |*L+1|<1, which corresponds to the indeterminate case.

3.3. Extended Growth Rate Perfect Foresight Dynamics

We argue here again that the fact that there are no simple links between
the determinacy of the stationary state x� and its stability under learning,
may be due to the fact that determinacy was applied to the perfect foresight
dynamics (16) on the levels of the state variable xt , while agents try to
learn extended growth rates. We may thus expect that simpler relationships
might arise if one considers instead determinacy in a perfect foresight
dynamics on extended growth rates. Such a dynamics is constructed in
assuming that the traders' beliefs fit,

xt= :
L

l=1

;l (t) xt&l , (26)

for every xt&l (l=1, ..., L) in V(x� ) and every t�0. The dynamics with per-
fect foresight (16) of the state variable induces a L-dimensional extended
growth rate perfect foresight dynamics on the extended growth rates
;(t)=(;1 (t), ..., ;L (t)) whose fixed points are the stationary EGR(L).
Applying the determinacy criterion to these vectors, in this extended
growth rates dynamics, allows us to show by that the stationary EGR(L)
that governs the perfect foresight dynamics restricted to the L-dimensional
eigenspace associated with the L eigenvalues *1 , ..., *L of lowest modulus, is
actually the only one that is locally determinate. In view of Theorem 5, this
fact implies that the equivalence between determinacy and stability under
learning will be restored, at least when *L+1 and �L+1

i=1 *i have the same sign.
Since (26) holds for each t, the corresponding expectations are as

follows:

xe
t = :

L

l=1

;l (t) xt&l and xe
t+1=;1 (t+1) xe

t + :
L

l=2

;l (t+1) xt+1&l .
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Under the perfect foresight hypothesis xe
t and xe

t+1 are equal to xt and
xt+1 , respectively, so that (16) becomes:

(1+#;1 (t+1)) xt=& :
L&1

l=1

(#; l+1 (t+1)+$l) xt&l&$Lxt&L . (27)

Since (26) and (27) holds for every xt&l , the EGR(L) perfect foresight
dynamics is obtained whenever the coefficients of (26) and of (27) coincide.

Definition 6. Let #{0. Assume also that (26) holds for every xt&l

near x� (l=1, ..., L) and every t�0. The EGR(L) perfect foresight dynamics
is a sequence of L-dimensional vectors (;(t)) such that

;l (t)=&
#;l+1 (t+1)+$ l

1+#;1 (t+1)
(28)

for each L=1, ..., L, and with the convention that ;L+1 (t+1)=0.

This dynamics is well defined if and only if ;L (t){0 in each period. For
in that case (28) for l=L determines ;1 (t+1) while the other equations
determine ;l (t+1) for l=1, ..., L&1. In the case L�2 (the case L=1
was dealt with Section 2), ;L (t){0 implies ;L (t+1){0 if and only if
#;L (t+1)=(;L&1(t)�;L(t)) $l&$l&1 {0. So, when $L {0, global dynamics
are not well defined but local dynamics near every stationary EGR(L) are
(see appendix 5.3). If $L=0, then *1=0 (since *1 ...*L+1=&$l�#=0 and
|*1|< } } } <|*L+1| ), which implies (by using Lemma 4) that ;� 1

L {0 but
;� k

L=0 for k{1 (i.e., k=2, ..., L+1), so that local dynamics are not well
defined around ;� k (for k{1) but one may say that ;� k is unstable for k{1
while ;� 1 is stable in the sense that either ;(t)=;� k (k{1) at all times, or
;(t)=;� 1 if ;L (t){0 at some date.

Since (28) displays a (multidimensional) one-step forward looking struc-
ture without predetermined variables, a stationary EGR(L) is locally deter-
minate if and only if all the eigenvalues which govern (28) close to it have
real part of modulus greater than 1.

Proposition 7. The stationary EGR(L) ;� L+1 that governs the perfect
foresight dynamics (16) restricted to the L-dimensional eigenspace associated
to the L eigenvalues *1 , ..., *L of lowest modulus, is the unique stationary
EGR(L) to be is locally determinate in the EGR(L) perfect foresight
dynamics (28). Therefore, in view of Theorem 5, the dynamic equivalence
principle holds true if *L has the same sign as �L+1

i=1 * i , and not otherwise.

Proof. See in Appendix 5.4. K
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4. CONCLUSION

The main innovation of the paper is to describe an extended growth rate
perfect foresight dynamics whose fixed points are the L-dimensional vectors
of coefficients which govern the local perfect foresight dynamics restricted
to some L-dimensional eigensubspace. Such a dynamics allows us to save
the equivalence between determinacy and stability under recursive learning
under a simple one sided (sign) condition that may be related to the condi-
tion for stability of differential equations. It is clear, however, that this
result depends on specific features of the model.

(i) Agents were assumed to condition forecasts at t only on past data
up to date (t&1). An interesting topic for further research would be to
investigate what would happen if agents may condition also on the current
equilibrium state xt .

(ii) Finally, agents were assumed to care about deviations from the
stationary state value x� so that, in fact, they were a priori aware of this
value. One may go beyond such an assumption by introducing an estimate
, of the value x� into the perceived laws of motion (17). Namely (17)
rewrites:

xt= :
L

l=1

;lxt&l+,.

One can prove that, in this case, saddle determinacy of the stationary state
(x� ) is equivalent to its stability under learning if *L+1 ��L+1

i=1 * i>0 and
�i *i=&1�#>0, i.e., if *L+1>0. Actually learning a stationary extended
growth rate does not rely on the fact that agents already know x� . Therefore
the former condition ensures that agents discover the law of motion of the
state variable restricted to the subspace corresponding to the L roots of
lowest modulus *1 , ..., *L . The remaining one (#<0) ensures that, in the
model where L=0, agents discover the value x� (#>&1) if and only if the
stationary state (x� ) is locally determinate ( |#|<1).

5. PROOFS

5.1. Proof of Lemma 4

We first transform the dynamics (16) into a vector first order difference
equation

xt+1=Txt ,
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where

xt#\
xt

b

b

xt&L
+ and T#\

&1�# &$1 �#

IL

} } } &$L �#
0
b

0
+ .

The proof proceeds from the fact that xt belongs to a L-dimensional eigen-
subspace Wk (k=1, ..., L+1) of (16) if and only it is a linear combination
of the k eigenvectors that span Wk . Of course the (L+1) eigenvalues of the
(L+1)_(L+1) matrix T are the perfect foresight roots *i (i=1, ..., L+1)
of the characteristic polynomial P. A convenient form for the (L+1)_1
eigenvector ui (i=1, ..., L+1) associated with *i is obtained by using the
relations between the coefficients and the roots of P. Namely:

P(*)=0 � `
L+1

i=1

(*&* i)=0

� *L+1&\ :
L+1

i=1

*i+ *L+ } } } +(&1)L+1 `
L+1

i=1

*i=0.

Let us identify the coefficients in the expression above and those of P. One
gets

(&1)l+1 _l+1 (L)=$l�# for l=0, ..., L+1, with $0 #1, (29)

where L is the set of all the perfect foresight roots, and _l (L) is the l th
(l=1, ..., L+1) elementary symmetric polynomial of L, i.e., the sum on all
the possible products over l different elements of L:

_1 (L) =
def

:
1�i1< } } } <il

(*i1
} } } * il

).

By definition ui is such that Tu i=*i ui (i=1, ..., L+1). It can be shown
that

ui=(*L
i , *L&1

i , ..., 1)$,

where the symbol $ denotes the (vector) transpose. The perfect foresight
trajectory that is restricted to Wk is such that xt is a linear combination of
all the ui but uk . This condition writes det(xt , Uk)=0 where Uk is the
(L+1)_L matrix whose columns are all the ui but uk . Developing
det(xt , Uk) with respect to its first column xt leads to

� xt= :
L

l=1

a lxt&l= :
L

l=1

((&1) l+1 2 l �20) xt&l ,
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where 20 is the determinant of the (L&1)_(L&1) Vandermonde matrix
and 2l=_l (Lk) 20 (see respectively Ch. 10 and Ex. 10.12 in Ramis,
Deschamps and Odoux [15]) and Lk is the set of all the perfect foresight
roots but *k . Thus al is as stated in Lemma 1, namely:

ak
l =(&1) l+1 _ l (Lk). (30)

It remains consequently to prove that vectors (ak
1 , ..., ak

L) are the solutions
to (19), i.e., ak

l =;� k
l (l=1, ..., L and k=1, ..., L+1). We show this directly

by replacing ;l in (19) by the coefficient ak
l given (30) for any k given.

Observe first that, for #{0, the lth equation of (19) rewrites:

(1�#+;1) ;l=&;l+1&$ l �#. (31)

Since ak
1=_1 (Lk) and (&1�#)=_1 (L), we have (1�#+;k

1)=*k . Hence the
Lth equation of (19) becomes (recall that ;L+1=0)

;L=
$L �#
*k

=
1

*k
(&1)L+1 _L+1 (L), (32)

where we used (29) with l=L. By definition, _L+1 (L) is the product over
all the perfect foresight roots. Therefore (32) rewrites:

;L=(&1)L+1 `
L+1

i=1
i{k

*i =
def

(&1)L+1 _L (Lk).

As (30) shows, ;L is equal ak
L , and so ak

L=;� k
L . Assume now that

;l+1=ak
l+1 (l<L). We are going to prove that ; l=ak

l (l<L). Indeed, by
using (29) and (30) in (31) for some l, one obtains:

;l=
1

*k
((&1) l+2 _l+1 (Lk)+(&1) l+1 _l+1 (L))

=
1
*k

(&1) l+1 (&_ l+1 (Lk)+_ l+1 (L)).

But, by definition, _l+1 (Lk) is the sum on all the products over (l+1) dif-
ferent elements of Lk while _l+1 (L) is the sum on all the products over
(l+1) different elements of L. The difference between these sums is just the
sum on all the products over (l+1) different perfect foresight roots,
provided that each of the remaining products includes the root *k . Hence:

&_l+1 (Lk)+_ l+1 (L)=*k_l (Lk) O ;l=(&1) l+1 _l (Lk)=ak
l .

370 STE� PHANE GAUTHIER



Since ;l=ak
l , we have ;� k

l =ak
l for any l (l=1, ..., L) and for any given k,

which completes the proof of Lemma 1.

5.2. Proof of Theorem 5

The dynamics (23) in the neighborhood of ;� k (k = 1, ..., L+1) is
governed by the L eigenvalues +k

j ( j=1, ..., L) of the L_L Jacobian matrix
9k of (23) calculated at ;� k:

&2#;� k
1&1 &# 0 } } } 0

&#;� k
2 &#;� k

1&1 &# } } } 0

9k=\ &#;� k
3 0

. . .
. . . b + .

b b
. . .

. . . &#
&#;� k

L 0 } } } 0 &#;� k
1&1

These eigenvalues are the L solutions of the equation det(9k&+IL)=0,
where IL denotes the L_L identity matrix. Let develop det(9k&+IL) with
respect to its first column:

(&1)2 (&2#;� k
1&1&+) }

&#;� k
1&1&+

0
b

0

&#
. . .

} } }

} } }
. . .
. . .
} } }

0
b

&#
&#;� k

1&1&+ }
+(&1)3 (&#;� k

2) }
&#
0
b

0

0
&#;� k

1&1&+
b

0

} } }
&# } } }

. . .
} } }

0
0

&#
&#;� k

1&1&+ }+ } } }

+(&1)L+1 (&#;� k
L) }

&#
&#;� k

1&1&+
b

0

0
&#

} } }

} } }
0 } } }
. . .
} } }

0
0
0

&# } .

Therefore,

det(9k&+IL)=0

� Qk (z)=(1+#;� k
1+z)L& :

L

l=1

(&1) l #k;� k
l (1+#;� k

1+z)L&l=0. (33)

The expression of ;� k
l given in (30) lead to

(&1) l #l;� k
l =(&#) l (&1) l+1 _k

l (Lk)=(&1) l+1 _k
l ([&#Lk]),
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where the L elements of the set [&#Lk] are (&#*j) for j=1, ..., L+1 and
j{k. We reintroduce now the expression of (&1�#) given in (29):

(&1) l #l;� k
l =(&1) l+1 _k

l \{ 1
�L+1

i=1 * i
Lk =+ . (34)

Let now y#1+#;� k
1+z so that (33) rewrites (with (34)):

Qk ( y)= yL& :
L

l=1

(&1) l+1 _k
l \{ 1

�L+1
i=1 *i

Lk=+ yL&l=0.

This shows that the L roots of Qk are *j ��L+1
i=1 *i for j=1, ..., L+1 and

j{k. Namely:

1+#;� k
1++k

j =
* j

�L+1
i=1 *i

.

Since ;� k
1=_1 (Lk)=_1 (L)&*k , one finally gets (by using again the

expression of (&1�#) given in (29):

+k
j =

*j

�L+1
i=1 *i

&1&#;� k
1=

* j

�L+1
i=1 *i

&
�L+1

i=1 * i

�L+1
i=1 *i

+
�L+1

i=1 * i&*k

�L+1
i=1 *i

� +k
j =

*j&*k

�L+1
i=1 *j

for j{k.

A stationary EGR(L) ;� k is locally stable under learning if and only if +k
j <0

for each j=1, ..., L+1 but j{k (k=1, ..., L+1). The result follows.

5.3. Local Extended Growth Rate Dynamics

Recall that, from (29), we have:

$L �#=(&1)L+1 _L+1 (L) and $L&1 �#=(&1)L _L (L). (35)

If $L {0, then _L+1 (L)=>L+1
i=1 * i {0, so that *i {0 whatever i is

(i=1, ..., L+1). Now, it follows from (30) that:

;� k
L=(&1)L+1 _L (Lk) and ;� k

L&1=(&1)L _L&1 (Lk) (36)

Since _L (Lk)=>L+1
i=1, i{k *i and since *i {0 when $L {0, it follows that

;� k
L {0 whatever k is (k=1, ..., L+1). It remains consequently to show

that, when $L {0, we have:

;� k
L&1

;� k
L

{
$L&1

$L
=

$L&1�#
$L �#

. (37)
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Using definitions (35) and (36), this condition is equivalent to:

_L (L)
_L&1 (Lk)

{
_L+1 (L)

_L (Lk)
.

Observe now that _L+1 (L)�_L (Lk)=*k , so that (37) rewrites

*k _L&1 (Lk)&_L(L){0 � _L (Lk){0

which is true when $L {0. This proves the claim.

5.4. Proof of Proposition 7

The dynamics (28) in the neighborhood of ;� k is obtained by linearizing
(28) at ;� k:

#Bk (;k (t+1)&;� k)=&(1+#;� k
1) IL (;k (t)&;� k),

where

;k
1 (t) ;� k

1 1 0 } } } 0

b b 0 1 b

;k(t)#\ b + , Bk#\ b b
. . . 0+ .

;k
L&1 (t) ;� k

L&1 0 } } } 0 1

;k
L (t) ;� k

L 0 } } } } } } 0

Assume that det Bk=;� k
L {0, i.e., $L {0 (see Section 5.3). One can express

(;k (t+1)&;� k) as a function of (;(t)&;� k) for ;k (t) near ;� k. Namely:

(;k (t+1)&;� k)=Fk (;k (t)&;� k) where Fk # &
1+#;� k

1

#
B&1

k .

Let %k
j and bk

j ( j=1, ..., L) denote the L eigenvalues of Fk and Bk

(k=1, ..., L+1) respectively. Then we have: %k
j =&(1+#;� k

1)�(#bk
j ).

Remark now that 9k=&#Bk&(1+#;� k
1) IL , so that: +k

j =&#bk
j &#;� k

1&1.
Hence,

%k
j =

1+#;� k
1

(1+#;� k
1)++k

j

=
*k

*j
,

where the last equality comes by replacing ;� k
1 by _L&1 (Lk) (see (30)).

A given stationary EGR(L) ;� k (k=1, ..., L+1) is locally determinate in
(28) if and only if |%k

j |>1 ( j=1, ..., L+1 and j{k), which holds true
if and only if k=L+1. The result follows.
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