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Abstract

We analyze random redistribution among risk-averse agents with
quasilinear utility. For randomness to yield social benefits, the optimal
deterministic redistribution must involve bunching. Differential treat-
ment that is unattainable in the deterministic case due to bunching,
becomes feasible in the stochastic case, allowing for discrimination.
Randomness in redistribution implies a shift from the downward to
an upward incentive structure that makes redistribution goals aligned
with incentives. We exhibit an example of a Rawlsian government
that should design lotteries directed toward the most risk-averse pop-
ulation rather than the least risk-averse.
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1 Introduction

In a first-best environment the government observes the innate traits of in-
dividuals, which can serve as a basis for the design of redistribution policies.
Financial assistance, such as food stamps, housing subsidies or cash bene-
fits can be provided to the low-skilled poor, disabled persons or those with
qualifying medical conditions preventing gainful activity. The spectrum of
policies available to the government often is more limited when some relevant
characteristics of individuals are not publicly known. Authorities then have
to spend extra resources to perform a suitable targeting of income support
to those in need, implying a balance between efficiency and equity concerns.
Mirrlees (1971) formalized the additional costs due to privately known traits
by accounting for incentive constraints that ensure self-selection by those in
need while deterring unwarranted claims.

A general lesson from this literature is that the burden of asymmetric in-
formation typically falls on those in need, rather than those in more favorable
situations. Indeed a typical response to asymmetric information is to reduce
the amount of assistance, as the lower aid enables the government to target
those in need as beneficiaries of assistance while others are discouraged.

Several ideas have been explored to expand redistribution through im-
proved targeting of assistance. Most of them involve some form of ordeal
mechanism subjecting vulnerable populations to challenging tasks or stress-
ful conditions, in the spirit of Nichols and Zeckhauser (1982). The govern-
ment can for instance rely on time-consuming shameful queuing to distribute
essential goods to low-income households. It may also implement unnecessar-
ily complex and lengthy application processes to prove eligibility for benefits,
or impose additional conditions after admission to continue receiving bene-
fits, such as requiring beneficiaries to regularly send their children to school
or undergo health check-ups. The social usefulness of these complementary
schemes thus depends on balancing the direct cost borne by the targeted pop-
ulation and the benefits from relaxed incentive constraints associated with
the discouragement of undue claims.

In these examples, the ordeal is usually taken as deterministic, i.e., pain
comes for sure. However it is known from, e.g., Lang (2017), Ederer, Holden,
and Meyer (2018) or Lang (2023), randomization limits gaming social rules
by blurring incentives. Vague standards or legal uncertainty may deter firms
to undertake strategies detrimental to the society; hospitals, for instance,
may be discouraged from selecting healthy but less costly to treat patients if



they are not aware of the exact amount of compensation they will receive. In
this paper, we are interested into such a form of ordeal, which is to impose
random noisy transfers to risk averse recipients.

In public finance, Weiss (1976), Stiglitz (1981), Stiglitz (1982) or Brito,
Hamilton, Slutsky, and Stiglitz (1995) have shown that deterministic redis-
tribution sometimes is socially dominated.! Income lotteries can be due to
random noise in taxes, because of e.g., administration errors, tax evasion
coupled with non-comprehensive auditing, or uncertainty about the actual
fiscal regime amid frequent tax reforms. In Wijkander (1988) or Dworczak,
Kominers, and Akbarpour (2021), lotteries occur in the presence of quotas
and rationing in the allocation of certain goods or services, as limits on mar-
ket transactions lead some agents to engage in trade with strictly interior
probabilities (with some risk of being rationed). In the same vein, random
labor and before-tax income variations can be induced by the minimum wage
and the risk of unemployment; they can also be due to randomness in oc-
cupations for students who apply for medical training in the Netherlands
and are accepted by draw. But rather than before-tax income, the most
explicit randomizations perhaps concern situations where the government
instead relies on random after-tax incomes and allocation of consumption
goods for redistributive purposes. Tobin (1971) argues that income tests for
housing subsidies make support ‘available only for an accidentally or arbi-
trarily selected few’ while randomness from housing programs involving rent
regulation improves selectivity in access for low-income populations in Weitz-
man (1977). Similar situations are common when an agency has to allocate
scarce resources, e.g., when the distribution of public piped water and en-
ergy resources in developing countries involves shortages through rationing,
potentially with random interruptions of supply services.

The literature presents a straightforward argument for random allocation
to outperform the best deterministic alternative. Following Hellwig (2007),
suppose that the government would like to redistribute income to low-skilled
in a population of risk averse workers. Redistribution is potentially limited
if the government observes neither skill nor the exact amount of labor, as
high-skilled might reduce labor effort to enjoy higher transfers. Randomness
in the after-tax income of low-skilled is detrimental to their welfare, but
this also expands the scope of possible redistribution by discouraging risk-

1See also Pavlov (2011), Gauthier and Laroque (2014), Pycia and Unver (2015) or
Gauthier and Laroque (2017) for related approaches.



averse high-skilled from relaxing labor effort. We thus expect a deterministic
optimum if high-skilled do not suffer much from income noise, which leaves
us with little hope for randomized taxes to improve the welfare of the poor,
who are usually found more risk averse than the rich.

Although the above argument sounds intuitive, it does not fully accord
with a puzzling parametric example in Strausz (2006). In this example,
a regulatory authority faces two types of firms with different production
technologies. If it offers the first-best option while not observing technologies,
then incentive compatibility fails, as low production cost (efficient) firms
would mimic high cost (inefficient) firms. Still, the second-best regulatory
policy involves a random option designed for the mimicking (efficient) firms,
rather than the mimicked (inefficient) firms.

This example suggests that the argument identified thus far for the role of
randomization does not completely account for the impact of random noise in
the presence of asymmetric information. Our paper provides a related exam-
ple that combines bunching in the deterministic optimum and a reversal of
incentives, shifting from the familiar downward pattern under deterministic
redistribution to an upward pattern when random transfers are introduced.
Eventually offering random options to the most risk-averse agents may be
optimal.

We consider a Rawlsian government that only values the agents with
the lowest utility. If incentive compatibility issues could be dealt with the
first-order approach that neglects the possibility of bunching, the best deter-
ministic redistribution policy would involve socially disfavored (rich) types
envying the option designed for those more socially favored (poor). How-
ever, the strong redistribution motive underlying Rawlsian criteria leads to
bunching where many different agents, including those socially favored, have
to enjoy the same transfers. Incentives then prevent the authority from dis-
criminating recipients. In extreme cases, deterministic redistribution might
not even be possible.

The uniform treatment of the agents in the deterministic optimum with
bunching is akin to some form of uniform rationing which blurs the pattern of
incentives. Every agent may then be seen as both willing to mimic any other
agent and envied by the others. We show that randomization then allows the
government to exploit new dimensions of individual heterogeneity, e.g., risk
aversion, in a way that reverses the pattern of incentives compared to the
deterministic case. Randomness makes the agents that the government wants
to favor now envying the treatment of those with lower social importance,
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a feature reminiscent to countervailing incentives. A similar reversal occurs
in Strausz (2006), but not in Hellwig (2007) where the same structure of
incentives prevails both in the deterministic and stochastic cases. Actually
the disappointing outcome for pro-poor policies in Hellwig (2007) relies on
the fact that high-skilled types continue to envy low skilled once random
noise is introduced into the tax system. Our example shows that this is not
a general property.

The gain from making incentives aligned however comes with a cost, as
risk averse agents have to face randomness. In a particular parametrization
of our model the gain from aligned incentives overcomes the cost, and redis-
tribution should involve a random allocation for the socially favored (lowest
utility) agents, though they display the highest risk aversion. This may
provide incentive-based justifications for randomness in social assistance, or
water or energy distribution.

The paper proceeds as follows. Our setup with random redistribution is
described in Section 2. Section 3 characterizes the role played by bunching
in the deterministic optimum. Section 4 shows that, in the presence of small
random noise in taxes, the direction of incentives can be reversed compared
to the deterministic case. Section 5 provides a condition for socially useful
randomization in the polar case where bunching prevents any deterministic
redistribution. Some properties of random redistribution in this case are
discussed in Section 6. The analysis is generalized in Section 7 to partial
bunching, and Section 8 presents parametric examples where optimal redis-
tribution involves randomness. Finally, Section 9 concludes.

2 General framework

A government designs a redistribution policy between a continuum of agents
in a population of total unit size. Heterogeneity across agents is characterized
by 6, a real parameter taking values in © = [Ginf, HSUP] , which is referred to as
the type of the agent. It has cumulative distribution function F': © — [0, 1]
associated with positive density f: © — R, ..

The preferences of a type 6 agent are represented by the quasilinear utility
function

U(C, 9) - Y, (1)
where c is thought of as a quantity purchased for a payment of . For instance,
¢ may correspond to the consumption of water or electricity distributed via



the supply system, while y represents the usage fee. These variables could
also represent benefits and contributions to a regulatory agency.

The function u is increasing and differentiable in ¢ and 6. It is strictly
concave in ¢, implying that every agent is risk-averse with respect to c.
The quasilinear formulation in (1) is commonly employed in the presence
of asymmetric information because it facilitates addressing incentive issues.
However, it implies that the first derivative u.(c, #) with respect to ¢, which
also represents the marginal rate of substitution between consumption ¢ and
payment y, is independent of y, a property that may lack realism.

Formulation (1), where 6 enters as an argument of the function wu, sug-
gests to interpret type as reflecting some general consumption preferences or
tastes. A more concrete interpretation of 6 could posit that it represents a
private endowment, which may serve as a substitute for purchased consump-
tion. For instance, in the analysis of Cape Town water crisis carried out
by Abajian et al. (2024), # would capture grey water, stored rainwater, or
some capacity to extract groundwater, which serve as substitutes for piped
water delivered in quantity c. In the same vein, this parameter could reflect
additional sources of housing capacity, such as family transfers, that supple-
ment public housing benefits, or various types of solar panels substitutes for
publicly provided electricity. In this context, households pay an amount y
for consuming a quantity ¢ of piped water or publicly provided electricity,
given their endowment # in these commodities. This interpretation is consis-
tent with the parametric example in Section 8, where u(c, 6) is specified as
In(c+0), with ¢+ 0 representing the total consumption of water or electricity,
namely the sum of publicly provided consumption and its substitutes.

In these example, agents with higher types (i.e., those with greater en-
dowments of private alternatives) likely place a lower value on an incremental
amount of the good they buy. Formally, this is captured by the condition
that the derivative u.(c, @) is decreasing in 6 for all (¢, 0).

Note that this form of the Spence-Mirrlees (single-crossing) condition
departs from the main strand of the literature in industrial organization
or public finance, where u.(c,6) is increasing in 6. For instance, in Mussa
and Rosen (1978), u(c,0) = Oc, where 6 represents the valuation of the
good by the consumer. In Lollivier and Rochet (2003), an agent with labor
productivity 6 must exert a labor effort of y/6 to earn a before-tax income
y. The agent’s utility is v(c) — y/6, or equivalently, after multiplying by 0,
Ov(c)—y. Thus, u(c, ) = Ov(c), and the cross-derivative uly(c, 0) = v'(¢) > 0,
implying that individuals who work more place a higher value on additional
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after-tax income.

The government designs a redistribution policy between the agents. The
policy is defined by a menu (&¢(6), 7(#)) of consumption and payment lotteries.
Such pairs are referred to as contracts. The menu of contracts is feasible if
aggregate consumption falls below aggregate payment,

/ E[(6) — §(6)] dF(6) < 0. 2)

S}

The government is assumed to know the distribution of types, but not to
observe the value of @ for every agent, which remains private information to
the agent. Indeed Abajian et al. (2024) suggest that substitutes for public
piped water are difficult to observe accurately in Cape Town. Therefore the
government must also ensure that agents choose the contract designed for
them. This is satisfied if the incentive constraints

E[u(¢(6),0) — 5(0)] = Elu(é(7),0) — g(7)] (3)

hold for all (6,7) in © x ©.

An optimal redistribution policy is a menu (¢(#), g(0)) that maximizes the
social welfare objective of the government subject to the feasibility constraint
(2) and the incentive constraints (3).

We expect wealthier consumers to have better access to private substi-
tutes. A redistributive government may accordingly prioritize individuals
with low access, more likely less well-off types. Here, we consider the polar
case of a Rawlsian government that only values agents with the lowest utility.
In all the paper, these agents appear to have the least substitute type 6™,
Let V(0) = E[u(¢(0),0) — y(0)] denote the expected indirect utility of type 6
when she chooses the lottery designed for her. The Ralwsian social objective
is

V(6™. (4)

A deterministic policy only consists of degenerate lotteries (c¢(6),y(0))
where every type 6 pays y(f) with certainty and consumes c(f) with cer-
tainty (the absence of a tilde mark applies to deterministic options). We are
interested into circumstances where some agents face non-degenerate lotter-
ies in the optimal redistribution policy. Given the quasilinear form of agents’
utility, there is no role for random payments, as replacing lottery () with
the sure outcome y(0) = E[g(0)] affects neither the constraints nor the social
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objective. We shall therefore consider y(#) deterministic for all types and
focus on random consumption.

3 Randomness and uniform rationing

This section shows that a menu of consumption lotteries (¢(#)) can be socially
useful only if incentive considerations restrain the government from relying
on deterministic discrimination, i.e., the same treatment has to be applied
to different types of agents.

We refer to Laffont and Martimort’s (2002) optimal ‘relaxed’ redistribu-
tion to formalize the idea of restrained discrimination. The relaxed policy is
a menu (¢(0), y(f)) maximizing the social objective (4) subject to the feasibil-
ity constraint (2) and the necessary first-order conditions for a local truthful
report in (3),

V'(0) = E [up(e(0), 0)] (5)

for all 6.

It coincides with the optimal redistribution policy if (5) is also sufficient
to meet the incentive constraints (3). Under our Spence-Mirrlees assumption,
this is met if the relaxed policy entails consumption that does not increase
with 6. Otherwise, if relaxed consumption increases for some values of 6,
optimal redistribution involves bunching with different types receiving the
same amount of consumption goods.

The decreasing pattern of relaxed consumption aligns with the social
objective by providing more to lower types; full equality would actually oc-
cur when ¢(f) + 0 is constant. This pattern echoes the observation that
wealthy residents in Cape Town (presumably with better access to private
underground water) have consumed less piped water ¢(#) than lower-income
households since the 2017 water crisis, making piped water inferior (though
we expect total water consumption ¢() + 6 to remain normal). However the
payment y(6) is designed to overcompensate the gain from alignment of con-
sumption. Indeed utility must increase with 6 by (5), while the government
seeks to favor the lowest type, which highlights a conflict between incentives
and redistribution goals.

How the utility of the lowest type relates to the distribution of consump-



tion obtains by summing up (5) over types, to get

V(0) = V(™) + /]E[ug(é(z),z)] dz.

Replacing y(6) with E[u(é(6),6)] — V() into the feasibility constraint (2)
then gives V(#'"). After using the integration by parts formula, it writes as

V(o) = / E[W(&(6).6)] dF(9) (6)

(S}

where

Wie,0) = u(c,0) — c—m(0)uy(c, )

represents the virtual contribution of type 6 to social welfare when she con-
sumes ¢ with certainty, and m(0) = [1 — F(0)] /f(#) is the Mills ratio.

In the optimal deterministic relaxed redistribution policy, every type 6
consumes

c*(0) = argmax W(c, ).

This provides us with a benchmark for desired discrimination. It can be
implemented if ¢*(0) is non-increasing in . The government can then discrim-
inate agents by designing a profile of transfers that make public consumption
lower for higher 6 substitute types, those with lower social importance, who
put less value on additional consumption.

Since then W (¢*(0),0) > W(c,0) for all ¢ and 6, we have W (c*(0),0) >
E[W (¢, 0)] for all ¢ and 6. In particular, the inequality holds true if for all
6 we set ¢ equal to the lottery ¢(f) that maximizes (6) subject to (3). This
yields:

Lemma 1. A random redistribution policy is socially useless if the optimal
determanistic redistribution policy coincides with the optimal deterministic
relaxed policy, i.e., the optimal deterministic redistribution policy involves no
bunching.

Proof. The argument given above leads to

/ E[W (&(6),0)] dF(6) < / W (¢*(6),0) dF(9)

S}



for every menu (¢(#)). The right-hand side of this inequality gives social
welfare in the optimal deterministic redistribution policy in the absence of
bunching (this is welfare in an optimal relaxed policy). The left-hand side
is an upper bound for social welfare in the optimal redistribution policy
in the presence of random noise. This upper bound is achieved if incentive
compatibility can be addressed using the first-order approach. This concludes
the proof. [

Socially useful randomness in redistribution can be achieved only if the
incentive constraints associated with the optimal deterministic policy lead to
bunching, where different types of agents face the same contract.

In the context of water distribution, the authority would be compelled
to allocate similar amounts of pipe water to recipients with different, but
privately known, outside access capacities #. This can be interpreted as
some uniform rationing. In a market where all agents would face the same
price, those with greater outside access capacities (# is high) would purchase
less pipe water than others (6 is small), as they value less pipe water from the
market (the marginal utility u.(c, #) decreases with ). They may accordingly
be viewed as being forced to have greater consumption, while the other agents
are rationed. This interpretation suggests that randomness with say, random
interruptions in water or energy distribution, possibly targeted on specific
segments of the population, could serve as a means to approach desired
discrimination. This idea is explored in the next section.

4 A reversal of incentives

If type 0 faces the deterministic option (c¢(6),y(#)), the incentive constraints
(3) simplify to

V(0) = u(c(0),0) —y(0) = wulc(r),0) —y(r
= V(7) +ulc(r),0) — ulc(r), 7)

for all # and 7. The authority has to give the informational rent u(c(7),0) —
u(c(r),7) to type € to ensure that they do not mimic type 7. Since u is
increasing with type (better access to substitutes allows agents to derive
greater utility from a given amount of the publicly provided good), this rent
is positive for § > 7. The familiar downward pattern of incentives prevails
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in the deterministic case, with the authority discouraging high types from
imitating lower types.

We are going to show that randomness leads to informational rents given
to low types, rather than high types. Our argument is more straightforward
in cases where incentives imply that all agents are subject to bunching, where
every agent consumes ¢* and pays y*, yielding indirect utility u(c*,8) — y*
to type € (a more general analysis is given in Section 7). The optimal con-
sumption ¢* is such that u(c, ™) — ¢ is maximized for ¢ = ¢*. If interior, it
satisfies

u, (¢*,0™) = 1. (7)

This can be implemented in a decentralized setup through the use of a two
bracket schedule, where a low (resp. high) unit price applies to consumption
below (resp., above) ¢*. Since feasibility requires y* = ¢*, the Rawlsian
government is prevented from any redistribution in the optimal deterministic

policy.

Consider now small randomizations in consumption where type 6 faces
the lottery ¢(f) = ¢* + £(0). We restrict to small noise, with realizations
of the random variable £(6) close to 0. We also require that greater noise
comes with greater transfers by setting E[£(0)] = var[£(0)] = Av(0), with X a
positive real number close to 0 and v() > 0 a (rescaled) variance bounded
from above.?

For such lotteries, the (second-order Taylor expansion of the) expected
utility of type 6 when she chooses the lottery ¢(7) designed for type 7 writes

E[u(c* +&(7),0)] =~ u(c",0) + M. (c*,0) <1 — @) v(7)

where " (c.0)
ub (c
Alc,0) = -2 >0
(c,) ul(c,0)
is the coefficient of absolute risk aversion of type 6. This shows that random-
ness allows the government to exploit heterogeneity in both marginal utility
ul, (¢*,0) and risk aversion. The sub-utility u (¢*,6) derived from consump-

tion in the deterministic case is now modified by AS (c¢*,0)v(7) for type 6,

20ur methodology can be applied to any menu where E[£(6)] and var[£(6)] are linearly
related. We did not investigate more general formulations.
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with

2

The quantity S(c*,0) approximates the extra utility derived by type 6 fol-
lowing a unit marginal increase from ¢* in her consumption of the publicly
provided good. It appears as an extra valuation of the consumption lottery
under scrutiny. In view of the Spence-Mirrlees assumption and (7), we have

S(c",0) = . (c*,0) (1 - A(C*’9)> |

S (c*,0) < ul(c,0™) + %u'c'c (c*,0) < 1.
The shape of S(c, 0) appears otherwise difficult to characterize. However, the
interpretation in terms of extra utility suggests that the relevant economic
case should involve S(c, #) taking positive values. Furthermore, based on the
Spence-Mirrlees assumption, we expect it to be decreasing in 6, Sy(c*,0) < 0.
This is indeed the case for the specifications presented below.

Example 1. CRRA preferences. Suppose that u(c,6) = ¢!=%/(1 — 0) for
0 # 1. From (7), the optimal consumption is ¢* = 1. At this point,

S(c*,0)=1-— g and Sp(c*,0) = —% < 0.

Referring to the upper bound of 2 for the coefficient 6 of relative risk aversion
obtained by Chetty (2006), we have S(c*,6) > 0.

Example 2. CARA preferences. Let u(c,0) = —exp(—0 (c — ¢)) /6 for some
consumption ¢ > 0. Then (7) gives ¢* = ¢, and both S(c*,0) and Sy(c*,0)
are as in the CRRA case. The estimates of the coeflicient of absolute risk
aversion # in Cohen and Einav (2007) are of an order of magnitude of 1072
at most. For such values, S(c*,0) > 0.

Example 3. Logarithmic Preferences. Let u(c,6) = In(c+6). Then (7)
gives ¢* =1 — ™. For 6™ close enough to 0,

1 1 1
* e 1——
5" 9) c*+9( 2c*+0>>0’

(e, 0) = —— (1 ! ) <.

(c+6)?2\  c+0

and
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From now onward, based on the insights from these examples, we assume:

Assumption Al. The extra valuation S(c*,0) of consumption is positive
and decreases with 6.

In the presence of random noise on consumption, the incentive constraints

(3) are: for all 7 and 6,
u(c",0) +AS (c*,0)v(0) — y(0) > u(c,0) + AS (", 0) v(T) — y(7),
or equivalently,

U@) =S (c",0)v(0) — y(6)

A%

AS (¢*,0)v(T) —y(T)
= U(r)+ A(S(c",0) = S(c*, 7)) v(r).

Incentives are now driven by the component U(6) of the overall utility V'(6).
The monotonicity properties of U(f) may differ from that of V' (#), allow-
ing for a reversal of incentives. Formally, the incentive constraints have a
simple textbook structure in v(f) and y(6), so that one can apply the usual
arguments to get:

Lemma 2. Consider a menu where the government uses small random per-
turbations £(0) to the optimal deterministic consumption ¢* with mean and
variance Av(0) for some X > 0 close to 0. The incentive constraints (3) are
satisfied if and only if

U'(0) = \Sy (¢, 0) v(0)

and v(0) is non-increasing for all 0.

Proof. Using the envelope theorem, a necessary first-order condition for
a local truthful report is U'(6) = ASj (c¢*,0) v() for all §. The second-order
conditions write Sj (¢*,0) v'(6) > 0 for all § where v is differentiable. Finally,

0
8% (S(c*,0)v(r) —y(r)) = /T Sp (", 2)'(7) dz

has the same sign as 6 — 7 since Sj (¢*, z) < 0 for all z. It follows that (3) is
satisfied for all 7 and #. This concludes the proof. [J

Lemma 2 conveys a reversal of incentives implied by the introduction
of random noise in redistribution. By Assumption Al, incentives require
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U(#) to be non-increasing. Note that the overall utility V(6) remains in-
creasing (V'(0) = up(c*,0) + ASy(c*,0)v(0) ~ upy(c*,0) > 0 for small A and
bounded v(#)). The reversal is characterized by a shift in the informational
rent A (S(c*,0) — S(c*,7))v(r) given to type 6 to prevent mimicking type
7. Unlike the deterministic case, the rent now turns positive for 7 > 6.
This upward, rather than downward, pattern aligns incentives with social
preferences.

5 Welfare improving randomization

The existing argument for randomization is based on relaxed incentives when
random noise is applied to mimickees, requiring these agents to be less risk
averse than mimickers (Hellwig, 2007). The reversal of incentives in Lemma
2 instead occurs when Sy(c*,6) < 0, which is consistent with a risk aversion
decreasing with 6. Actually, A(c*,0) = 1/(c* + #) in Example 3, type 6™f
agents are the most risk averse.

Still, type 0™ also faces the greatest noise. The following result provides
a condition under which the social gain from aligning incentives outweighs
the loss from random noise.

Proposition 1. Optimal random redistribution. Consider a menu where
the government uses random perturbations £(0) to the optimal deterministic
consumption ¢* with mean and variance Av(6) for some A > 0 close to 0. Let
v(0) be non-negative, non-increasing and bounded from above. The random
menu improves upon the deterministic optimum if and only if

/ 6(c*, 0)u(0) dF(0) > 0 (8)
©

where

o(c,0) =S (c,0) —1—m(0)Sy (c,0).

A proof is in Appendix A. A heuristic argument for deriving (8) follows
from the methodology developed by Saez (2001) for optimal taxation. The
Rawlsian government must maximize the resources that can be transferred
to type 0™ agents. Once random noise is introduced, the net contribution of
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a 6 agent is y(0) — [¢* + \v(0)]. Therefore, using the definition of U(6), the
total collected resources can be written

/ IAS (c*,0) v(0) — U(6) — ¢* — Mu(B)] dF(0) 9)

Consider a reform that increases the (rescaled) variance v(#) of consump-
tion by a small amount dv for all types between 6 and 6 + df, df positive
close to 0. These types, who are directly concerned by the reform, are in to-
tal number f(6)df. The argument distinguishes behavioral and mechanical
effects of the reform.

The behavioral effect is the change in total collected resources that ab-
stracts from the adjustments needed to meet incentives, i.e., with U(f) tem-
porarily maintained fixed at its initial level. It captures the net social cost
of the randomization that transits through the noise bearing on the socially
favored agents. The payment made by every type 6 directly concerned by
the reform increases by AS (¢*,0)dv. The total resources thus increase by
AS (¢*,0) f(f)dv df. However, the government takes advantage of the noise
to raise average consumption to every such agents, which costs Adv per agent.
Overall the change in total collected resources is A[S (¢*,8) — 1] f(6)dv d6.
Given U (#), the reform yields a lower amount of resources, which represents
a net cost for the society (recall that S (c*,0) < 1).

This cost has to be compared to the social gain from getting incentives
aligned with redistribution tastes. Such a gain obtains when one accounts for
the mechanical response of U(#) to the reform. By Lemma 2, U’(f) changes
by dU’'(8) = ASj (c*,0) dv for every type directly concerned by the reform.
It follows that the utility changes by dU = dU’(0)d0 = A\Sj (¢*,6) dv d6 for
every type above 6 + df, implying a change in total collected resources equal
to —(1 — F(0))\S, (¢*,0) dv df. Since Sj < 0, these are indeed additional
resources.

The whole change in resources that can be transferred following the in-
troduction of the noise thus is

A[S (¢*,0) — 1] £()dv A6 — (1 — F(0))AS, (c*,0) dv b

or equivalently, A\¢ (c*,8) f(0)dv df. The ¢ (c¢*,0) term in Proposition 1 bal-
ances the loss in net resources from agents concerned by the reform (their
higher payment does not compensate the cost from the additional consump-
tion they receive) and the greater resources allowed by the reduced informa-
tional rents given to high types above 6.
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6 Shape of random redistribution

The inequality (8) shows that there is no social improvement from random-
ness if S (¢*,0) > 0, i.e., in the absence of reversal of incentives (recall that
S(c*,0) <1).

If the additional resources ¢(c*,8) collected from type 6 decreases with
0, then (8) is satisfied if and only if ¢(c*, #™) > 0 . In this case, there exists
a threshold type 6*, 0* > 0™ such that every type 6 < 6* should face a
random contract.

If ¢(c*,0) instead increases with 6, then the government would like to
make consumption random for high types specifically, but this would violate
the monotonicity requirement for incentive compatibility that v(6) must be
non-increasing. Redistribution would then have to involve randomness for
all agents. This provision cannot be optimal, however, as agents with the
highest types should always face certainty.

We now provide a general characterization of the optimal shape of random
transfers, including the special case where ¢(c*, #) increases with 6. It follows
from the observation that random redistribution is optimal if ond only if the
highest value of the sum in (8) in Proposition 1 is positive for a non-increasing
profile of rescaled variance. The form of this problem allows us to rely on the
methodology introduced by Myerson (1981) and consider the new function

H(C,q) = / o(c" F (=) dz

for every quantile ¢ € [0, 1] of the type distribution. Then, let G be the

concave hull of H (this is the smallest concave function satisfying G(c*, q) >
H(c*, q) for all ¢), and

o(c",0) = Gy(c", F(9))
as the so-called priority rule. We have:

Proposition 2. Consider a menu where the government uses random per-
turbations £(0) to the optimal deterministic consumption c* with mean and
variance Av(6) for some A > 0 close to 0. The random menu improves upon
the deterministic optimum if and only if

o(c*, ™) > 0.
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There exists 0* > 0™ such that the highest amount of extra resources implied
by randomization obtains by setting v(0) > 0 and non-increasing for all § <
0%, and v(0) =0 for all 0 > 6*.

The proof mirrors Myerson (1981), Section 6 pp. 68-69, or Condorelli
(2012), and thus it is omitted. Actually, a non-increasing variance maxi-
mizes the sum in (8) if it maximizes this sum with ¢(c*,6) replaced with
o(c*,0). Proposition 2 then follows from the fact that priority ¢(c*,6™f) is
non-increasing in ¢ since G(c*, q) is concave in q.

The two polar cases with ¢(c*,#) monotone in 6 discussed above obtain
for H(q) either concave or convex. In the concave case, ¢(c*, 0) is decreasing
in 6, and thus ¢(c*, ™) = ¢(c*, #™). In the convex case, ¢(c*, 6) is increasing
in 0,

aamzﬂwwu:/aaﬂmz

for all #, and consumption should be random if and only if a policy with
v(f) = v > 0 for all § could yield an extra amount of total collected resources.

Consider now an arbitrary curvature of H(q). By Proposition 2, we can
restrict attention to v(f) = v > 0if @ < 6*, and v(6) = 0 otherwise. For such
policies, (8) is met if and only if there exists a threshold type 0* € [Hinf, QS“I’}
such that? .

1 — S(c*, M)

1—S(cr, 6%)
Thus, agents with the highest types should never be exposed to randomness,
since the left-hand side of (10) is positive for all types while its right-hand
side is 0 at 0* = 6°"P,

The writing (10) provides us with a better understanding of the eco-
nomic conditions where random noise in redistribution can be useful. First,
S(c*, ™) has to be much higher than S(c*, ) for almost all § > ™. Second,
most agents should have high types close enough to #*'? so that 1 — F'(#) in
the right-hand side of (10) remains close to 1 for a large part of the popu-
lation. Overall, Rawlsian redistribution by means of lotteries requires wide
dispersion in the valuation of the good S(c*,#) and low variance in the extra
consumption capability 6.

Such a combination is reminiscent of circumstances identified by Weitz-
man (1977) and Spence (1977), where the price system is a better instrument

<1- F(6). (10)

3A detailed derivation of (10) is in Appendix B.
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than rationing to allocate resources. This may not come as a surprise. When
(10) is met, the socially favored types 6™ value the good much more than the
rest of the population, providing the government with strong incentives to
allocate them a greater amount of goods. However, this cannot be achieved
in a deterministic fashion, which involves uniform rationing. Screening then
is difficult to make since it has to be based on small differences in extra
capabilities 6. Following Lemma 2, the government can instead base screen-
ing on valuation S(c*,#) in the presence of random noise. This allows, to
some extent, for the replication of the market allocation, with higher, though
stochastic, transfers to those actually rationed, who would have consumed
more through the market.

7 Non-uniform partial bunching

So far we have considered the polar case of uniform bunching in the determin-
istic optimum where every type faces the same option (c*,y*). In practice,
authorities often rely on schemes with more than just two brackets. Then,
provided that bunching operates everywhere, the general form of the optimal
deterministic schedule consists of a collection of contracts (cf,y;) assigned
to every agent with a type ranging from 6; to ;4 (91- < §i+1)- Proposition 3
below extends Proposition 1 to such schedules.

Proposition 3. Non-uniform deterministic bunching. Suppose that the op-
timal deterministic redistribution policy consists of n different brackets, with
every type of agents in [éf,éfﬂ) consuming c; against payment y’. There
exists a random policy that improves upon the deterministic optimum if

g

n i+1

Z/d)(cz,e)v(e) dF(8) > 0

i=1 Y
o3

for some non-increasing profile of consumption variance (dv(0)) close to 0.

We outline the argument for the two-interval configuration n = 2 charac-
terized by an interior threshold type 6* such that every type 6 < #* consumes
¢; while the remaining higher types # > * consume ¢} (¢; > ;). This deter-
ministic schedule is dominated if small random noise dv(f) = Av(#), A > 0
small, on consumption yields a higher amount of total collected resources
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while the socially favored type 6™ agents do not loose, dU(#™) > 0. These
resources can then be redistributed to each agent by uniformly lowering pay-
ments, without violating incentive constraints.

The utility of every type 6 < §* changes by

0
dU(0) = dU(6™) + / ASy (7, 2) du(z) dz

Qinf

so that the total change in utility of these agents can be written, after using
the integration by parts formula,

é*
dU(6™) — [1— F (6*)] dU (6*) + / ASy (5, 0)m(0) dv(0) dz dF(6).

Qinf

Similarly, the utility of every type # > #* changes by

o 0
dU(9) = dU (™) + / ASy (cf,2) du(z) dz + /)\Sé (c5,2) dv(z) dz,
ginf 0%

which now yields a total utility change for these agents equal to
gsup
[1-F(6%)]dU (6%) + / ASy (c5,0)m(0) dv(0) dF(6).
o+
Then, from (9), the additional amount of collected resources implied by
random noise writes

/ A6 (¢, 0) du(0) dF(0) + / A6 (¢, 0) du(0) dF(0) — dU (™).
gint e

Given a profile (dv(#)), which Lemma 2 shows must be non-increasing to
meet incentive requirements, the highest amount of collected resources that
does not hurt type 6™ agents obtains by setting dU (™) = 0. This yields
the condition given in Proposition 3 for n = 3, with 67 = 6™ 05 = 6* and
05 = 65",
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Remark 1. Partial bunching. Proposition 3 also applies for 6% b < 0P,
i.e., in the absence of bunching at the top of the distribution. Then, one can
set v(0) = 0 for all types that are not concerned by bunching, 6 > 6% 4+1- The
change in collected resources is

o*
n 1+1

S [ Ao (e, 0) Au@)AF ) — aUE) + [1~ F(F)] UG,
i=1 G
As above, dU (/™) = 0 maximizes the additional revenue. The perturbation
argument guarantees incentive compatibility among types below 07 ,. To
avoid failures of incentives involving types above 0y, , one can give dU(0;;, ;)
to every such types. This costs [1 — F(6;,,)|dU (0}, ) in terms of tax re-

sources, hence the result in Proposition 3 for this special case.

8 Examples of optimal randomization

We exhibit two specific parametrizations where bunching occurs with deter-
ministic policy tools and randomized contracting is socially useful.

8.1 Multiplicative utility

We first consider a variant of the multiplicative formulation used by, e.g.,
Lollivier and Rochet (1983), where utility is

h(@)v(c) -y, (11)

with v(c) is increasing concave, and h(#) is a (twice differentiable) decreasing
function taking positive values.

The virtual contribution W (e, 6) defined in Section 3 is h(6)v(c) — ¢ —
m(0)h'(8)v(c). Consumption ¢*(#) in the optimal relaxed policy thus satisfies
the first-order condition [h(6) — m(0)R'(0)]v'(c) — 1 = 0 at ¢ = ¢*(0). This
amount locally maximizes the virtual contribution. Differentiating the first-
order condition shows that

hl/(e)
h(0)

d0)>0<1—m'(0) <m(b)
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Standard distributions have a decreasing Mills ratio, m/(€) < 0. In the case
where 6 is exponentially distributed with rate parameter A\, the Mills ratio is
m(0) = 1/X and the inequality is met if h”(0)/h'(0) is positive (so that h(6)
is concave) and high enough. Heterogeneity is low at the bottom, and more
pronounced among high types, who differ more significantly from low types.
In this case, bunching occurs, and by (7) every agent consumes c¢* such that
h(6™5)0' (¢*) = 1.

By Propositions 1 and 2, small random noise on types 6 < 6* improves
upon the deterministic optimum if there is 8* < 6°"P satisfying

0*

V() <1 — #) / [h(0) —m(8)h' ()] dF () — F(0*) > 0.
ginf
Note that agents have the same risk aversion, A(c) = —v"(¢)/v(¢) does not

vary with 6. After applying the integration by parts formula, this inequality
rewrites as

V(") (1 — A(QC )) [h(@i“f) —[1 = F(0")]h(6)] — F(6) > 0. (12)
By Assumption Al, A(c¢*) < 2, and so (12) is not satisfied for §* = 5" (we
have used h(#™)v'(c*) = 1). Agents with high substitutes should indeed face
a deterministic option.

However, (12) can be satisfied at the bottom of the type distribution. The
left-hand side of the inequality is 0 for 6* = '™, As a result, it is optimal to
rely on small random noise at the bottom if the derivative

U/<C*> (1 _ A(ZC )) [f(einf)h(einf) o h/(einf)] o f(einf) > 07
a condition that will be met if f(6™) is close enough to 0 () is close enough
to 0 in the exponential distribution case).

In this example, the process of screening is complicated by the shape of h,
since its slope close to 0 implies tiny differences across types. No differential
treatment can be implemented using deterministic tools. Randomness among
low types is socially beneficial when there are few such agents. Then the
efficiency cost of randomness is limited compared to the gains from relaxed
incentives.
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8.2 Log-utility and weibull distribution

We now consider an example where utility depends on the sum of ¢ and @,
in accordance with the interpretation of 6 as a substitute for the consump-
tion good. Preferences are represented by the logarithmic utility function
u(c,0) = In(c+ 6) used in Example 3.

Using (6) the optimal deterministic relaxed redistribution policy maxi-
mizes

V(6™ = / {1n(c(9)+«9)—c(9)— c(?)(i) 7 dF(0). (13)
(S

The consumption ¢*(f) that maximizes pointwise V (6™) is the nonnegative
root of the first-order condition (c*(8) + 6)* — (c*(8) + 6) — m(6) = 0,

L+ 4m(6))/?

c*(0) 5 — 0. (14)
Bunching occurs in the deterministic optimum if this quantity is increasing,
m'(0) > (1 + 4m(6))"/>. (15)

The inequality can be satisfied for well-chosen log-logistic, Weibull, and
variants of Weibull distributions such as generalized or power generalized
Weibull commonly used in econometric models for duration data. Our exam-
ple uses a generalized Weibull distribution (see Dimitrakopoulou, Adamidis,
and Loukas (2007) for properties of this distribution). Its cumulative distri-
bution function is

F0)=1—exp [1 - (14 )\Qb)“}

for 6 > 0, with a, b and A positive parameters. The Mills ratio m(6) is
increasing for a < 1 and b < 1.

We set a = 0.5,b = 0.05 and s = 0.5. The condition (15) for bunching
is satisfied if and only if 6§ < 19.9, which corresponds to 22.7 percent of the
population with the lowest types.

The optimal deterministic policy consists of a single contract (¢*,y*) of-
fered to every type 6 < * while all the other types are assigned the optimal
relaxed contract (c*(6),y*(6)). The social objective V (6') thus is

7 [ln(c* +6)—c" — mio) dF(0) (16)

c*+0
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+o0

+ / [m(c*(e) 1 0)—(0) —

*

m(6)

———— | dF'(0).
c(0)+0 (9)

Using the expression of ¢*(#) given in (14), the optimal threshold §* is
such that o
- 1+ (1+4m(0” _

¢ =0 = ( 2m( D" g (17)

To characterize the amount c*, we apply the integration by parts formula
and rewrite the contribution of types below §* to the social objective V (§™)
in (16) as

—[1=F(0)]In(c"+0%) +Inc" — c*F(6).

Solving for the first-order condition for ¢* to maximize this contribution,
which is a quadratic equation in ¢*, the only positive root is

R AT Y PR Rk
¢=— +2\/(1 0)+F(9_*)'

Replacing this expression of ¢* into (17) defines the optimal threshold 6*.
Numerical computations (see the R code in Appendix B) yield ¢* = 4.02 and
0* = 74.87, with F'(6*) = 23.88 percent.

Let us now account for random consumption with variance dv(f) = dv >
0 for all # < #*, where 6* is a threshold type below #*. Higher types face a
deterministic option, with dv(f) = 0 for all # > 6*. A social improvement
obtains if, by Proposition 3,

_F(r) — %F(;) (1 _ ﬁ) o <1 _ %) S0, (18)

The shape of the left-hand side is depicted in Figure 1. It is 0 when evalu-
ated at 6* = 0, and decreasing for 6* close enough to 0. This implies that
randomness should not concern a too narrow subset of the smallest types.
For higher values of 8%, it is single-peaked, reaching its global maximum of
0.0265 for § = 73.83. It takes positive values for all §* € [9.76,6*], with
F(9.76) = 7.33 percent.

Thus, in this example, randomness should apply to at least the bottom
7.33 and at most 23.88 percent of types.
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Figure 1: Random redistribution with a generalized Weibull distribution

The figure depicts function of 6* that appears in the left-hand side of (18). It is drawn
for a generalized Weibull distribution with parameters a = 0.5,b = 0.05 and s = 0.5.
The threshold 6* is on the horizontal axis. See the R code in Appendiz B for recovering
the figure. It is optimal to expose all agents with type 0 below 0* if the function takes a
positive value when evaluated at 0*. The vertical dotted line at @ = 9.76 gives the least
value of the threshold such that the function reaches positive values. For readability
purposes, the figure does not represent the function for 8* above 20. The function is
actually single-peaked at takes positive values for 8* below 0* = T4.87, and negative
values for higher 6%, so that it is not optimal to expose all agents to random contracts.

Relying on the interpretation of (8) as a change in total collected re-
sources, the highest social welfare gain that can be achieved equals 0.0265 x Av
USD. Since the less well-off get at most In(c* +6™f) = In(4.02)USD, this gain
represents a 0.0265/1n(4.02) x Av share of the initial level of welfare. For
Av = 1, i.e., a one-unit increase in the average transfer (25 percent of the
initial consumption), we find a modest welfare gain, with lower bound of 2
percent.

9 Conclusion

Our paper examines the choice between deterministic versus random redis-
tribution. We have shown that the random alternative is preferred only if
the best deterministic policy implies a uniform treatment of different types of
agents. Randomness then allows the government to exploit new dimensions
of individual heterogeneity and implement discriminatory treatment.
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The existing literature following Hellwig (2007) suggests that rationing,
viewed as implying randomness in the allocation of goods designed for the
poor, can be justified as far as these agents display lower risk aversions. Our
paper shows that stochastic redistribution can be socially useful even though
random noise bears on the most risk averse agents. In this respect, it can
be used to justify policies relying on rationing the less well-off part of the
population to improve its welfare. This may be relevant in the case of the
provision of goods when recipients differ in the availability of substitutes that
are difficult to observe.

Two features in our analysis could be worth addressing in further work.
First, we considered the case of a Rawlsian planner, which magnifies ten-
sions from redistribution. A continuity argument suggests that the results
should remain unaffected for weighted utilitarian redistributive preferences
that place greater importance on agents who value consumption more. On
the other hand, the occurrence of bunching in the deterministic optimum
may be less plausible for weak redistribution motives, e.g., the unweighted
(Benthamite) utilitarian social welfare objective, implying low redistribution
made deterministically.

A second feature relates to the interplay between the extent of bunching
and optimal randomization. Our parametric examples suggest that random
contracts apply to a subset of the agents affected by failures of monotonicity
requirements while redistribution should remain deterministic at the top of
the distribution. It seems plausible that deterministic redistribution is more
suitable when a smaller portion of the population is concerned by bunching.
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Appendices

A A Proof of Proposition 1

We first express the payment made by type 6 as a function of her indirect
utility V (0),
y(0) =u(c*,0)+ NS (c",0)v(0) — V(0).

The expression of the indirect utility V' (#) obtains from using the first-order
necessary condition in Lemma 2 for incentive compatibility, which yields

0
U) =U (6™) + / ASy (¢*, 2) v(z)dz,

ginf
so that
0
V(0) =u(c,0)+U (™) + / Sy (c*, 2) v(z)dz.
ginf

The feasibility constraint (2) reads

/ [ + \v(6) — y(0)] dF(6) = 0.

S}

Replacing y(6) with its expression in terms of V' (6), with V() given above,
we find

/ [+ M(6) — AS (¢, 6) v(6)] dF(6)

S}

U (™) + / / AS) (c*, z)v(z) dz dF(0) = 0.

O ginf

Using the integration by parts formula,

/ / Sh(c*, 2) v(z2) dz dF(0) = / m(0)S, (c*, 0) v(0) dF(0),

S me e
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the feasibility constraint allows us to get the sub-utility U(#) driving incen-
tives in the presence of small random tax perturbations for type 6™,

U (™) = - / [+ M(f) — AS (¥, 0) v(8) + m(B)ASy (", 0) v(0)] AF ().

Social welfare is V' (6™) = u (¢*,6™) + U (6™F), which is actually

w (e, 0 — / (€ + A6 (¢, 0) v(8)] AF (9),

S}

with ¢ (c¢*, 0) defined in Proposition 1.

The expression of social welfare in the absence of noise obtains by letting
v(9) = 0 for all 6. It reduces to u (¢*, ™) — ¢*. This yields condition (8) in
Proposition 1 for socially useful random redistribution (recall that A > 0 for
the variance of consumption to be non-negative). This concludes the proof.

B Detailed derivation of (10)

Applying the integration by parts formula, we have

0~ 0*

/m(@)Sé(c*,Q) dF(0) =[1 — F(0")] S(c*,@*)—S(c*,Qinf)—l—/ S(c*,0) dF(6).
Therefore,

o
/cb(c*,@) dF(0) = —F(6*) — [1 — F(6%)] S(c*,6°) + S(c*, o™).

Qinf
This is positive if and only if
S(c*, 0™ — S(c*,6%) > F(0*)[1 — S(c*,0)].
Since S(c*, %) < 1, this rewrites as

S(C*’einf> o S(C*,e*)
1 —S(c*, 6)

> F(67),
which is equivalent to (10).
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C R code for Section 8

a <- 0.5; b <- 0.05; s <- 0.5

FF <- function(x) 1 - exp (1-(1+s*x"b) a)

ff <- function(x) {
ff <- (ax(1+s*x"b )7 (a-1)*s*bxx~(b-1))
ff <- ffxexp(1-(1l+s*x"b) a)
ff

}

mm <- function(x) (1-FF(x)) / ff(x)

mmprime <- function(x) {
mnp <- - (a*b*x(b-1)*s*x"(b-2)*(1+s*x"b) " (a-1))
temp <- a*b*s*x”(b-1)*(a-1)*s*xbxx~(b-1)
mmp <- mmp - temp*( 1l+s*x"b)~(a-2)
mmp <- mmp / (a*b*s*x"(b-1)*x( 1+s*x"b) " (a-1))"2
mmp

bunch <- function(x) mmprime(x) - (1+4*mm(x))~(1/2)
xx <- seq (le-10,1e3,1e-2)
plot (xx , bunch(xx))
# bunching occurs for xx such that bunch (xx) is positive
max (xx[bunch(xx)>=0]); FF(max(xx[bunch(xx)>=0]))

thetabar <- function(x) x+((1-x)"2+4*x/FF(x))"(1/2)-(1+4*xmm(x))~(1/2)
plot (xx, thetabar (xx))
# threshold below which bunching occurs has thetabar = 0
min (xx[thetabar (xx)>=0]); FF(min(xx[thetabar (xx)>=0]))
theta <- min(xx[thetabar (xx)>=0])
theta

cbar <- (1-theta)/2+((1-theta) "2+4*theta/FF(theta))~(1/2)/2
cbar

sfnum <- function(x) {
sf <- (1-FF(x))*(1-1/(2x(cbar+x)))/(cbar+x)
sf <- -FF(x)-sf+(1-1/(2*cbar))/cbar
st
}
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sumphi <- function(x) sfnum(x)-sfnum(le-10) # sumphi is 0 at 1e-10
xx <- seq (l1e-10, theta, le-1)
max (sumphi (xx)); xx[sumphi (xx)==max (sumphi (xx))]
sumphi (theta)
min (xx [sumphi (xx)>0]); FF(min(xx[(xx)>0]1))
# Figure exported in the main text
xx <- seq(le-10, 2, le-5)
plot (xx, sumphi(xx), type="b", xlim =c(-0.5,20), ylim =c(-0.1,0.03))
xx <- seq(2,20,1e-3)
points (xx, sumphi(xx), type ="b")
abline (h=0, col="red", lty="dotted")
abline (v= min (xx[sumphi (xx)>0]), 1ty ="dotted")
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