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A set of strategy profiles is here said to be closed under rational behavior (curb) if it contains all its best replies. Each curb set 

contains the support of at least one Nash equilibrium in mixed strategies, but there are perfect Nash equilibria that are not 

contained in any minimal cuirb set. It is shown that every game with compaci strategy sets and continuous payoff functions 

possesses at least one minimal curb set, that every minimal curb set is identical with its best replies and that it is contained in 

the set of rationalizable strategy profiles. 

1. Introduction 

While a Nash equilibrium is a point in the Cartesian product of the players’ strategy spaces such 
that no player can increase his payoff by a unilateral deviation, a strict Nash equilibrium requires 
that any unilateral deviation actually incurs a loss. Any strict Nash equilibrium has all the strategic 
stability properties that the refinement literature asks for, but many games lack such equilibria. In 
any non-strict Nash equilibrium, at least one player is indifferent between some of his pure strategies 
even under his Nash equilibrium beliefs. As is well known, such indifference can make the 
equilibrium highly ‘unstable’. 

The point is illustrated in fig. 1 below. The game in diagram (a) has a unique Nash equilibrium, 

and in this equilibrium both players randomize between their first two strategies, player 1 choosing T 
with probability 2/3 and M with probability l/3, and player 2 choosing L with probability l/4. 
However, under these Nash equilibrium beliefs, player 1 is indifferent between T and M, and player 
2 is indifferent between L and R. If player 1 would assign probability p > 2/3 to the uncertain 
event that 2 will choose L, then l’s unique optimal strategy is B. And if player 2 would assign 
probability q > 1.3 to the event that 1 will choose M, then 2’s unique strategy is L etc. Strategy T, 
which is assigned probability 2/3 in Nash equilibrium, is optimal for player 1 only if he assesses 
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L R L R 

T 4,l 1,2 T 2,2 0,o 

M 1,3 2,l M 0,l 1,l 

B 6,2 0,3 B 0,o 0,2 

(4 (b) 
Fig. 1 

l/4 <p < 1.3. It thus appears that the unique Nash equilibrium of this game (hence its only perfect 
equilibrium) is ‘unstable’. In particular, it does not seem justified to exclude, as does the Nash 
equilibrium criterion, the possibility that player 1 will play B, even if pre-play communication is 
presumed. 

While the example in fig. la suggests a coarsening of the Nash equilibrium concept, the same type 
of argument applied to the game in fig. lb suggests a refinement of the Nash equilibrium 
requirement. For although the Nash equilibrium (M, R) is undominated and hence perfect, a 
pre-play agreement to play (M, R) does not appear to be ‘self-enforcing’, since also L is a best reply 
to M, and in view of this indifference on behalf of player 2, player 1 may contemplate playing T. If 
player 2 assigns positive probability to the possibility that 1 will play T, and a smaller probability to 
the event that 1 will play B, then 2’s unique optimal strategy is L, in which case player 1 should 
certainly play T instead of M. It hence seems that we are led to a rejection of the perfect but 
non-strict Nash equilibrium (M, R) in favor of the strict equilibrium (T, L). 

We will argue that even if one agrees to treat pre-play communication as possible but implicit, it is 
not clear why one should presume that ‘agreements’ take the form of a single strategy (pure or 
mixed) profile, rather than a set of strategy profiles. Indeed, a set-valued solution concept has been 
developed by Kohlberg and Mertens (1986). However, while they select sets of Nash equilibria, i.e. 
sets contained in their own best replies, we here select sets containing all their own best replies, a 
‘dual’ approach which can be viewed as a set-theoretic coarsening of the notion of strict Nash 
equilibrium while their approach is a set-theoretic refinement of the Nash equilibrium concept. 

One set-valued solution concept developed in this paper is the ‘tight curb’ notion, i.e. sets which 
are identical with their own best replies. In the light of the work of Bernheim (1984) and Pearce 
(1984) one sees that, in a game with continuous payoff functions and compact strategy sets, a 
maximal tight curb set coincides with the set of rationalizable strategy profiles. Hence, while their 
work may be seen as an investigation into the properties of the maximal tight curb set in a game, the 
present paper may be viewed as an exploration of the whole spectrum of tight curb sets, with 
particular attention paid to the opposite end of this spectrum, viz. the minimal tight curb sets. One 
reason for highlighting minimal tight curb sets is that these are the ‘nearest’ set-valued generalization 
of strict equilibria. Moreover, minimality has the advantage of reducing strategic ambiguity. 
However, in certain games such an advantage turns out to be too costly in terms of other game 
theoretic desiderate, so in this first exploration we consider minimal tight curb sets only as useful 
benchmarks. In addition to studying curb and tight curb sets, defined in terms of best replies, we also 
investigate a weaker notion, curb* sets, based on undominated best replies. 

2. Notation and preliminaries 

Attention in this paper is focused on normal-form games G = (N, S, U), where N = { 1, 2,. . _ , n } 
is the set of players, S is the Cartesian product of the players’ strategy sets S,, and U is a mapping of 
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S into R”, such that q(s) E R is the i’th player’s von Neumann-Morgenstern utility level when 
strategy profile s is played. We will let 9 denote the class of all games G in which each strategy set 
S, is a compact set in some Euclidean space and each payoff function q: S + R is continuous. For 
any game G, let P be the collection of all products of non-empty and compact subsets of the players 
strategy sets, i.e. X E P if and only if X is the Cartesian product of nonempty compact sets X, C S, 

[i=,l, 2 )...) n]. (In particular, S E P if G E 9.) As is usual, we will write s\s,’ when the ith 
component of a profile s is replaced by sl. A strategy profile s E S is a Nash equilibrium if 
U,(s) 2 q.(s\s,‘)Vi E N, V.sl E S,, and it is a strict (Nash) equilibrium if q(s) > ~.(.Y\.Y;) V’i E N, 

vs,’ E S,-{ s, }. 
In the present paper, a ‘player’s belief about others’ strategies takes the form of a product 

probability measure on all players’ strategy sets (we include his own strategy set in the domain only 
for notational convenience). Hence, a player’s belief is formally identical with a mixed strategy 
profile m E M(S), where M(S) is the Cartesian product of the sets M(S) of Bore1 probability 
measures over each strategy set S,. For any Bore1 subset X, c S,, let M( Xi) be the (Borel) probability 
measures with support in X,, i.e. M( X,) = { m E M(S,): m(Xi) = l}, and for any XE P let M(X) 
be the Cartesian product of the sets M( 4). 

For each player i E N, streategy s, E S, and belief m E M(s), let u,(s, 1 m) be the player’s expected 
utility under belief m when he plays s, ‘. Let P,(m) be the i ‘th player’s set of optimal strategies in S, 
under belief m E M(S), i.e., strategies s, E S, such that u,(s, 1 m) > u,(s,’ 1 m) V.s,’ E S,. If G E 9, that 
is, payoff functions are continuous and strategy sets compact, then each set /3;(m) c S, is non-empty 
and compact. For any set X E P, let j3, (X) denote the i ‘th player’s set of optimal strategies under 
beliefs in M(X): 

P,(X) = u B,(m), (1) 
rnEM(X) 

and write /3(X) for the Cartesian product of the sets p,(X). This study is restricted to games G in 9, 
a class of games for which X E P implies p(X) E P. 

3. Sets closed under rational behavior 

A set X of strategy profiles will be said to be closed under rational behavior (curb) if XE P and 
p( X) c X. In words: a set X in P is curb if the belief that strategies outside X will not be played 
implies that such strategies will indeed not be played by players who are rational in the sense of 
never playing strategies that are suboptimal. 

In spirit, the present criterion is related to the notion of strict equilibrium, and, indeed, every such 
equilibrium, viewed as a singleton set, meets the curb condition: if s E S is a strict equilibrium then 
{ .F * } c p( { s * }). However, the curb criterion is also met by the set X = S of all strategy profiles in 
the game, the set X = S thus being the maximal curb set. Conversely, one may ask whether there 
exist minimal curb sets, i.e., curb sets which do not contain any proper subset which is a curb set: 

’ More exactly, we define u, : S, x M(X) + W by u,(s, 1 m) = /U,(z\s,)dm(z). Note that u,(s, 1 m) is functionally indepen- 
dent of the component m, E M(.S,). 
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Proposition 1. Every game G E S’possesses at least one minimal curb set. 

ProoJ Let Q be the (non-empty) collection of curb sets in S, partially ordered by (weak) set 
inclusion. By Hausdorff’s Maximality Principle, Q contains a maximal nested sub-collection. Let 
Q’ c Q be such a sub-collection, and, for each i E N, let Xl be the intersection of all sets X,’ for 
which X’ E Q’. Since each set X,’ is non-empty and compact, so is Xl, by the Cantor Intersection 
Theorem. Hence, X E P. Suppose s, E p,( r?). Since M( 2) c M( X’)VX’ E Q’, we have s, E 

P,( X’)V’x_’ E Q’> and thus s, E X,‘VX’ E Q’ (since all X’ E Q’ are curb). Hence, si E X,, so 

p,(X) c X,Vi E N, i.e., X is curb. 0 

Generalizing the definition of strict equilibrium from singleton sets to arbitrary product sets, we 
call a curb set X tight if p(X) = X 2. In particular, a profile s E S is a strict equilibrium if and only 
if {s } is a tight curb set. Note that a tight curb set is ‘immune’ to iterated elimination of suboptimal 
strategies under beliefs in M(X). For if it is common knowledge that no player will use a strategy 
outside X, then each player knows that other (rational) players will play in p(X) and hence each 
player should play in fi(p( X)) etc. If X is tight curb, then such iteration has no effect: p”(X) = X, 
for all n. 

While many games lack strict equilibria, every game G in 29 possesses at least one tight curb set. 
In fact, in such games, every minimal curb set is tight, indeed a minimal tight curb set (i.e., it 
contains no proper subset which is a tight curb set). Conversely, every minimal tight curb set is a 
minimal curb set. Formally: 

Proposition 2. A set in a game G E 9 is a miminal curb set iff it is a minimal tight curb set. 

Proof. First, suppose X is minimal curb but not tight. Then there exists some player j E N for 
which p,(X) c X, and p,(X) # X,. Let X,’ = /3,(X) and X/ = X,V, #j. Then X’ c X, X’ # X, 
p,(X’)=X,’ and M(X’)cM(X), so &(X’)cj?,(X)cX,‘=X,‘Vi#j. Hence, p(X’)cX’. The 
payoff function U, being continuous, the correspondence /3, from M(X) to S’ is non-empty - and 
compact - valued, and, by Berge’s Maximum Theorem upper hen-ii-continuous 3. Moreover, M(X) is 
compact, so its image p,(X) = j?,( X’) = X,’ is non-empty and compact, i.e., X’ E P. In sum: X’ is 
curb, contradicting the hypothesis that X is minimal. Thus, any minimal curb set is tight, and, being 
minimal among curb sets, it is minimal among tight curb sets. Secondly, suppose X is a minimal 
tight curb set. Applying the proof of Proposition 1 to the curb set X in the role of S, one establishes 
the existence of a minimal curb set X’ c X. By the first part of the present proof, such a set X’ is 
tight, and, since by hypothesis X is a minimal tight curb set, X’ = X. Hence, X is a minimal curb 

set. q 

In order to relate the concept of a minimal curb set to established solution concepts, two further 
observations are useful, both being valid for all games G in 3. First, every curb set in such a game 
contains the support of at least one Nash equilibrium in mixed strategies. To see this, suppose XC S 
is a curb set in G = (N, S, U) and consider the game G’ = (N, X, U) obtained when players are 
restricted to the (non-empty and compact) strategy subsets Xi. Like G, the ‘subgame’ G’ meets the 

’ In the language of Pearce (1984), a set X E P has the ‘best response property’ if X c p(X), so a curb set X is tight iff it has 
the best response property. 

3 We endow M(S) with the topology of weak convergence. A sequence (m’) from M(S) is said to converge weakly to 
M E M(S) if jfdm’ + /fdm for all continuous functions f: S + R. Since S is a compact metric space, so is M(S), see e.g. 

Theorem 6.4 in Parthasarathy (1967). 
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L R L M K L R 

T 3,l 0,O T 1,l 0,o 0,o T 1,l l,o 

13 0,o 1,3 M 0,O 2,3 3,2 B l,o 0,o 

B 0,O 3,2 2,3 

(4 
Fig. 2. 

(b) (4 

conditions of the Glicksberg Theorem concerning the existence of Nash equilibrium in mixed 
strategies. Now, if m E M(X) is such an equilibrium of G’, then it is also a Nash equilibrium of G, 

since by hypothesis each restricted strategy set X, contains all best replies in S, to strategies in X. 
Secondly, the set R c S of rationalize strategy profiles is non-empty and is the largest product set 
X c S satisfying the equality X = p(X). Hence, if the set R is compact, then R E P and R is the 
maximal tight curb set. Indeed, one can prove that R is compact (and non-empty) in games G E 9 
[Basu and Weibull(1990)]. In the light of this observation and Proposition 2, it should be clear why a 
minimal curb set and the set of rationalizable strategy profiles can be thought of as the two ends of a 
spectrum. 

To illustrate these general findings, let us briefly return to fig. 1. One notes that the only curb set 
in 1.a is the full strategy space { T, M, B } x { L, R } itself, and it contains as a proper subset the 
support ({T, M} X {L, R} itself, and it contains as a proper subset the support ({T, M } X {L, R}) 
of the unique (mixed strategy) Nash equilibrium, which also happens to be quasi-strict. The only 
minimal curb set in lb is {T } x {L}, the support of the unique strict equilibrium. Note that the 
support of the undominated and hence perfect Nash equilibrium (M, R) is not contained in any 

minimal curb set. 
Figure 2a below shows the ‘battle of the sexes’ with three curb sets, {T } x {L}, {B} X { R} and 

{T, B} x {L, R }, all of which are tight, but only two of which are minimal. The non-minimal curb 
set appears to be a plausible pre-play ‘agreement’, viz. if the two players cannot agree on any of the 
two strict equilibria. The game in 2b has two minimal curb sets, { T } x { L } and { M, B } X { M, R }, 
the first containing a strict equilibrium and the second a non-strict equilibrium. Intuitively, the 

second set seems the more likely pre-play agreement. The game in 2c suggests that the curb 
requirement may in some games be too restrictive. Consider the set {T } x {L} in that game. This 
set is evidently not curb, since player 1 can costlessly deviate from T. Yet one could argue that it is 
‘closed’ if not under ‘rational’ play, at least under ‘rational and cautious’ play, since the only other 
best reply for player 1 to 2’s strategy L is his weakly dominated strategy B. 

4. Sets closed under rational and cautious behavior 

The above observation about optimal but weakly dominated strategies suggests the following 
weakening of the curb criterion. For each player i E N, let S,* c S, be his subset of strategies that are 
not weakly dominated, i.e., for which there exists no mixed strategy m, E M( S,) which weakly 
dominates s, 4. For any belief m E M(S), let p,*(m) = &(m)flS,*, the i ‘th player’s undominated 
optimal strategies under m, and for any X E P, let pi*(X) = &( X)flS,*. A set XC S will be called 

4 More exactly, but with a slight abuse of notation: there exists no rn, E M(S,) such that q(~‘\m,) > U,(s’\s,) for all 
.r’ E S, with strict inequality for at least one s’ E S. 
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closed under rational and cautious behavior (curb* ) if X E P and p *(X) c X. In words: A set X of 
(pure) strategies is curb* if it is a non-empty and compact product set, and if the belief that 
strategies outside X will not be played implies that such strategies will indeed not be played by any 
player who is (a) rational in the sense of never playing strategies that are suboptimal, and (b) 
cautious in the sense of never playing a weakly dominated strategy 5. This weaker criterion is 
evidently met by the set X = { T } X { L } in fig. 2.~. 

It is not difficult to verify that minimal curb* sets exist in all games with continuous payoff 
functions and compact strategy sets. The proof of Proposition 2 does not apply, though. For while 
(in games G E S) the set /3(X) is non-empty and compact if X is, the set j?*(X) need not be 
compact. However, one can show that it is non-empty for every X E P 6. Hence, if we use the slightly 
weaker tightness condition that X be contained in the closure of p *(X) - such an X may be called 
almost tight - then a minor elaboration of the proof of Proposition 2 applies to curb*, mutatis 
mutandis, leading to the following parallel conclusion: a set is a minimal curb* set iff it is a minimal 

almost tight curb* set 7. 
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