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We investigate the dynamics of the cobweb model with adaptive expectations, a linear demand curve, and a nonlinear,
S-shaped, increasing supply curve. Both stable periodic and chaotic price behaviour can occur. We investigate, how the
dynamics of the model depend on the parameters. Both infinitely many period doubling and period halving bifurcations can
occur, when the demand curve is shifted upwards. The same result holds with respect to the expectations weight factor.

1. Introduction

In economics there is a growing interest in the use of non-linear deterministic models. The main
reason is that a non-linear deterministic model may exhibit both stable periodic and chaotic
behaviour, and hence may provide an endogenous explanation of the periodicity and irregularity
observed in economic time series. [For a survey on non-linear economic models exhibiting chaos, see
e.g. Lorenz (1989).]

In this paper, we investigate the dynamics of one of the simplest nonlinear economic models: the
cobweb model with adaptive expectations. The demand curve is linearly decreasing, while the supply
curve is non-linear, S-shaped and increasing. The dynamics of the expected prices in the model is
described by a one-dimensional nonlinear difference equation x,., = f(x,). Chiarella (1988) ap-
proximated this model by the well known logistic map x,,, , = ux,(1 — x,). Unfortunately, since the
map f is either increasing or has two critical points, the quadratic map (which has one critical point)
is not a good approximation of the map f. In another related paper, Finkenstidt and Kuhbier (1990)
present numerical evidence of the occurrence of chaos, in the case of linear supply and a non-linear,
decreasing demand curve.

In particular, we investigate how the dynamics of the model depend on the height of the demand
curve and the expectations weight factor. In this paper we present numerical results, and explain the
validity of these results by means of theoretical results. The proofs of these theoretical results will be
presented in a forthcoming long paper [Hommes (1991)].
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2. The cobweb model with adaptive expectations

The well known cobweb model is one of the simplest economic models. The model described the
price behaviour in a single market. We write p, for the price, p, for the expected price, g for the
demand for goods and ¢ for the supply for goods, all at time 7. The cobweb model is given by the
following three equations: )

q/=D(p,), (1)
q;=5S(4), (2)
q'=gq. (3)

In the traditional version of the cobweb model, the expected price equals the previous actual price,
that is §,=p,_,. It is well known that if in the traditional cobweb model both the supply and
demand curves are monotonic, then basically three types of price dynamics occur: Convergence to an
equilibrium price, convergence to period two price oscillations or unbounded, exploding price
oscillations. Recently, it was shown by Artstein (1983) and Jensen and Urban (1984) that chaotic
price behaviour can occur if at least one of the supply and demand curves is non-monotonic, see also
Lichtenberg and Ujihara (1989).

Nerlove (1958) introduced adaptive price expectations into the cobweb model, in the case of linear
supply and demand curves. Adaptive expectations is described by the following equation

ﬁl=ﬁt—l+w(pl—l _ﬁ1—1)9 O<wx<l. (4)

The parameter w is called the expectations weight factor, and for w=1 the model reduces to the
traditional cobweb model. In the case of linear supply and demand curves, the introduction of
adaptive expectations in the cobweb model has a stabilizing effect on the price dynamics, see Nerlove
(1958). However, the equilibrium price may still be unstable.

The question we address is: ‘What can be said about the price behaviour in the case of non-linear,
monotonic supply and demand curves?

For simplicity we assume that the demand curve is linearly decreasing, and is given by

D(p,)=a—bp, b>0. (5)

Concerning the supply, we start off with the following two Economic Considerations:

(ECI) If prices are low then supply increases slowly, because of start-up costs and fixed production
costs.
(EC2) If prices are high then supply increases slowly, because of supply and capacity constraints.

Based on these considerations we choose a non-linear, increasing supply curve.

The simplest smooth curve satisfying (EC1) and (EC2) is an S-shaped curve S with the property
that S has a unique inflection point p, such that (1) the slope S’ of S is maximal in 7, (2) 8’ is
increasing for p <p and (3) S’ is decreasing for p>p. We change coordinates and choose the
inflection point of the supply curve to be the new origin. Note that with respect to this new origin

both ‘prices’ and ‘quantities’ can be negative. As an example of an S-shaped supply curve satisfying
the above assumptions we choose

Sy(x) = arctan(Ax), A>0. (6)

Observe that the parameter A tunes the ‘steepness’ of the S-shape.
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Equations (1) through (5) yield a difference equation x,,, = f(x,) describing the expected price
dynamics, with f given by

fabwa(x)= —WSA(x)/b-F(l—w)x-l-aw/b. (7)

We would like to point out that the price dynamics and the quantity dynamics are equivalent to the
dynamics of the expected prices.

The map f, ., has a unique fixed point, which is the equilibrium price corresponding to the
intersection point of the supply and demand curves. An important question is: ‘What can be said
about the global dynamics of the model, when the equilibrium price is unstable?

3. Roads to chaos

In this section we investigate how the dynamics of the model depends on the height of the demand
curve (parameter a) and the expectations weight factor w. Figure 1 shows a bifurcation diagram with
respect to the parameter a, with the other parameters fixed at b= 0.25, w=0.3 and A =4.8. In fact a

Fig. 1. Shifting the demand curve upwards, stable periodic and chaotic price behaviour may interchange several times.
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bifurcation diagram of a one-dimensional model shows an attractor of the model as a (multi-valued)
function of one parameter.

Figure 1 suggests the following bifurcation scenario. If a is small then there exists a stable
equilibrium. If & is increased, then the equilibrium becomes unstable and period doubling bifurca-
tions occur. After infinitely many period doubling bifurcations the price behaviour becomes chaotic,
as a is increased. Next, after infinitely many period halving bifurcations the price behaviour becomes
more regular again. A stable period 2 orbit occurs for an interval of a-values, containing a=0.
When a is further increased, once more, after infinitely many period doubling bifurcations chaotic
behaviour arises. Finally, after infinitely many period halving bifurcations, we have a stable
equilibrium again, when a is sufficiently large.

Concerning the dynamics of the model, for the particular supply curve in (6), the results in
Hommes (1991) imply the following (we write f for f_ , , 1)

Given b>0 and 0 <w< 1, if A is sufficiently large, then there exist a, <a, <0<a;<a, such
that:

(1) f has a globally stable fixed point, if a <a,.

(2) f has a period 3 orbit, for a = a,.

(3) f has an unstable fixed point, a stable period 2 orbit, and no other periodic points, for a = 0.
(4) f has a period 3 orbit, for a = a;.

(5) f has a globally stable fixed point, fi a > a,.

From a well known result by Li and Yorke (1975) it follows that in the cases (2) and (4) the map
fasen 18 topological chaotic, that is: (i) there exist infinitely many periodic points with different
period, and (ii) there exists an uncountable set of aperiodic points, for which there is sensitive
dependence on initial conditions. Concerning the bifurcations scenario with respect to the parameter
a, properties (1)—(5) imply the following;:

(a) Infinitely many period doubling bifurcations occur in the parameter intervals (a,, a;) and

O, aj).
(b) Infinitely many period halving bifurcations occur in the parameter intervals (a,, 0) and (a;, a,).

Nusse and Yorke [1988] present a nice example x,,; = pF(x,) (where F is a one-hump map with
negative Schwarzian derivative and p is a parameter) for which they showed that both infinitely
many period doubling and period halving bifurcations do occur as p is increased.

Recall that increasing the parameter a is just shifting the demand curve vertically upwards. Hence
our theoretical results imply that, if the demand curve is shifted vertically upwards, then both
infinitely many period doubling and period halving bifurcations occur and periodic and chaotic
behaviour interchange several times.

A bifurcation diagram with respect to the expectations weight factor w, with the other parameters
fixed at a=0.8, b=025 and A =4, is shown in figure 2. The diagram suggests that a stable
equilibrium occurs for w close to 0. After infinitely many period doubling bifurcations the price
dynamics becomes chaotic, as w is increased. Next, after infinitely many period halving bifurcations,
the price behaviour becomes more regular again, until a stable period 2 cycle occurs, for w close to 1.

The results in [H] imply the following. Given b> 0, if A is sufficiently large and for a suitable
choice of the parameter ¢ we have:

(1) f has a globally stable fixed point for w close to 0.
(2) f has a period 3 orbit for intermediate values of w.
(3) f has a stable period 2 orbit for w close to 1.

This result implies that both infinitely many period doubling and period halving bifurcations
occur as w is increased from 0 to 1.
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.+ 2. For w close to 0 a stable equilibrium occurs, while for w close to 1 stable period 2 oscillations with large amplitude
ar; for intermediate values of w chaotic price oscillations with moderate amplitude arise.

In the case of linear supply and demand curves, the introduction of adaptive expectations into the
bweb model has a stabilizing effect on the price dynamics, see Nerlove (1958). We present a
rresponding result, in the case of non-linear, monotonic supply and /or demand curves. Recall that
=1 corresponds to the traditional cobweb model. As w is decreased from 1 to 0, then the
plitude of the price oscillations becomes smaller, see fig. 2. In the case of non-linear, monotonic
pply and/or demand curves the introduction of adaptive expectations into the cobweb model
mpens the amplitude of the price cycles. Meanwhile a price cycle may become unstable and
aotic price oscillations may arise. Hence, from a quantitative point of view adaptive expectations
ve a stabilizing effect, but from a qualitative point of view adaptive expectations may have a
stabilizing effect upon the price behaviour.

Discussion
Expectations and learning behaviour play an important role in economics. One of the fundamen-

| differences between the physical and the social sciences is that in a physical system the laws of the
stem are often fixed, while in a social system individuals learn from he past and influence the laws
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of the system. It has been argued, that, because of this fundarnent?] differegce, deterministic chaqs,
which pyla_vs an important role in the physical sciences nowadays, is of less interest to the economic
and social sciences. i _

In the traditional cobweb model, there is no learning behaviour: the suppliers behevg that today’s
price will also hold tomorrow. Recently, Holmes and Manning (1988) showed thaF n a_cobweb
model with nonlinear, monotonic supply and demand, when the suppliers learn by arithmetic mean,
that is, if they employ the mean of all past prices as their expectation of tomorrow’.s price, then prict?s
always converge to a stable equilibrium. Holmes and Manning conclude that if agents use their
membries, then chaos can not occur; only when agents are forgetful, chaos may occur. Stated
according to their aphorism: ‘Those who do not learn from history are condemned to never repeat it’,
see Holmes and Manning (1988, p. 7).

Our results show that the conclusions of Holmes and Manning are not true in general. Whether or
not chaotic behaviour is possible when agents learn from the past, depends on both the model and
the type of learning behaviour. We have seen that in a cobweb model with adaptive learning and
non-linear, monotonic supply and demand, chaotic price behaviour is possible, even in the long run.
It is well known that adaptive price expectations means that the expected price is a weighted average,
with geometrically declining weights, of all past observed prices. Hence, adaptive learning seems to
be much more realistic than learning by arithmetic mean, since adaptive learning puts higher weights
to the most recent prices. Unlike the aphorism of Holmes and Manning, one might say: Even those
who learn from the past, may never repeat it.

In Hommes (1991) we will analyse the dynamics of the model, for a general class of S-shaped
supply curves, in more detail. Moreover, we will present a geometric explanation of the occurrence of
chaotic price behaviour in the cobweb model with adaptive expectations, for a large class of
non-linear, monotonic supply and demand curves.
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