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Abstract

The price-quantity dynamics of the cobweb model with adaptive expectations and
nonlinear supply and demand curves is analysed. We prove that chaotic dynamical
behaviour can occur, even if both the supply and demand curves are monotonic. The
introduction of adaptive expectations into the cobweb model leads to price-quantity
fluctuations with a smaller amplitude. However, at the same time the price-quantity
cycles may become unstable and chaotic oscillations may arise. We present a
geometric explanation why chaos can occur for a large class of nonlinear, monotonic
supply and demand curves.
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1. Introduction

The cobweb model describes the temporary equilibrium market prices in a
single market with one lag in supply. The model was introduced in the
thirties (for a historical account see Ezekiel, 1938) and has since then been a
bench-markmodel in economic dynamics. As is well known, when suppliers
have naive price expectations and both the supply and demand curves are
monotonic, only three types of dynamics are possible: convergence to an
equilibrium price, convergence to a period 2 price cycle or exploding,
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comments have led to several improvements of the paper.
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unbounded price oscillations. Recently, Artstein (1983), Jensen and Urban
(1984), Lichtenberg and Ujihara (1989) and Day and Hanson (1991) have
shown that, if at least one of the supply and demand curves is non-
monotonic, then chaotic price fluctuations can arise.

Nerlove (1958) introduced adaptive expectations into the cobweb model
with linear supply and demand curves. In this paper we investigate the
dynamics of the cobweb model with adaptive expectations and nonlinear
supply and demand. We prove that chaotic price dynamics can occur
generically, even if both the supply and demand curves are monotonic. The
present paper contains theoretical results explaining earlier numerical results
in Hommes (1991). Finkenstddt and Kuhbier (1992) present numerical
evidence for the occurrence of chaos in the model for a linear supply curve
and a nonlinear, decreasing demand curve. Our methods can easily be
applied to prove the occurrence of chaos in that case, but in the present
paper we consider the model with linear demand and nonlinear supply. In
particular we investigate the model with an S-shaped, increasing supply
curve. Chiarella (1988) also considered this case, but he arbitrarily approxi-
mated the expected price behaviour by the well known quadratic difference
equation x,,;=pux,(1—x,). Unfortunately, the quadratic model is a bad
approximation.’

2. The cobweb model
Write p, for the price, p, for the expected price, g* for the demand for

goods and ¢ for the supply of goods, all at time t. The cobweb model with
adaptive expectations is given by the following four equations:

g{=D(p,), (Demand) (1)
4=S8(p,), (Supply) 2
qi=q’, (Temporary Equilibrium)  (3)

P=Dy 1 +WPi—y—DPi—1)s 0<wzx1. (Adaptive Expectations) (4)

'As we will see below, one can not analyze the exact model by approximation with the
quadratic model. One reason for this is that in the case of an S-shaped supply curve, the
expecled price dynamics is described by a difference equation x,,;=g(x,), where g is a
I-dimensional map with two critical points (i.e. the map g has two local extrema), whereas the
quadratic map has only one critical point. The dynamics generated by a map with two critical
points may be quite different from the dynamics generated by a map with one critical point. In
particular, as we will see, the bifurcation scenario when a parameter is varied is much more
complicated.
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Observe that the adaptive expectations in (4) can be rewritten as p,=
(1—w)p, | +wp,_,, so the new expected price is a weighted average of the
old expected price and the old actual price; the parameter w is called the
expectations weight factor.

In the special case w=1 we get p,=p,.,, so w=1 corresponds to the
traditional cobweb model with naive price expectations. In that case the
price behaviour is described by the difference equation

pi=D"'(S(p,-1)). (3)

When supply and demand are both monotonic, then the composite map
D7 'S is also monotonic, and it follows immediately that chaos can not
occur. The equilibrium price p, corresponds to the price where the supply
and demand curves intersect. The equilibrium price p, is (locally) stable if
and only if

—1<S8(pe)/D'(p) <1. (6)

What happens when 0=<w<1? In the case of linear supply and demand
curves, the introduction of adaptive expectations in the cobweb model
reduces the price oscillations, but the equilibrium price can still be unstable.
Nertove (1958) presents data concerning the prices, the supply and the
demand of cotton, wheat and corn, and concludes that in the case of wheat
the equilibrium is unstable. Consequently the unstable case would appear to
be empirically relevant. From now on we assume that the demand curve is
decreasing and the supply curve is increasing, and that they intersect each
other. Given an initial expected price pp, an initial price p, or an initial
quantity go, Egs. (1-4) uniquely determine all future expected prices, prices
and quantities. From (1-3) we get D(p)=S(p,), so that p,=D'S(p,).
Substituting this last expression into (4) for time t+1 yields?

Prv1=(1—w)p,+wD™*S(p,). (7

The stability condition for the unique equilibrium price p, is
2 1} L
1= —<S(p)/Dp) <1 (8)
This expression is less stringent than the corresponding stability condition (6)

2Since p,=D""'S(p,), q,=S(p,), and D and § are monotonic, it follows that the price dynamics,
the quantity dynamics and the dynamics of the expected prices are all qualitatively the same.
Hence, the difference equation (7) completely determines the qualitative dynamics of the model.
One might also write down a difference equation describing the dynamics of the prices or the
quantities, but the difference equation in (7) is easier to analyse.
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of the traditional cobweb model. Hence, the introduction of adaptive
expectations into the cobweb model increases the possibility for (local)
stability for given supply and demand curves. We now address the following
questions: (Q1) What can be said about the (global) price-quantity dynamics?
(02) Is chaotic price behaviour possible, even when both the supply and demand
curves are monotonic?

3. A class of difference equations

First we investigate the class of possible difference equations p,.; = f(p,) in
(7), when both the supply and demand curves are monotonic. Let K be the
following class of smooth maps f:R*—-R™

K={f:R*>R"|fis C', —0 < f(x)<d <, for some d>0}. 9)

The next theorem describes the class of difference equations generating the
expected price dynamics.

Theorem 1. (i) If the supply curve S and the demand curve D are monotonic
Cl-curves, with §'=0 and D'<0, then for every w, O<w=1, the map [
generating the expected price dynamics in (7) belongs to the class K.

(ii) For each map [ in K there exist an expectations weight factor w,
0<w<1, a monotonic supply curve S with §'=20, and a monotonic demand
curve D with D' <0, such that the difference equation x, = f(x,) describes the
dynamics of the expected prices in the corresponding cobweb model with
adaptive expectations.

A proof of theorem 1 is given in the appendix. The theorem shows that
there are many possibilities for the difference equation x,,; = f(x,), describ-
ing the dynamics of the expected prices, in the cobweb model with adaptive
expectations and monotonic supply and demand curves. The map f may be
non-monotonic, with 1, 2 or more critical points. Observe however that e.g.
the logistic map g,(x)=pux(1—x) does not belong to the class K| since the
condition g;(x)<1 is not satisfied. In section 4 we present a detailed analysis
of the dynamics of the expected prices in the case of an S-shaped, increasing
supply curve. In that case the map f has two critical points.

4. Global dynamics

This section presents the main results concerning the global dynamics.
Since we are interested in the global dynamical price behaviour, we have to
be more specific about the choice of the supply and demand curves. Here we
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choose a linear demand curve and a general class of nonlinear, increasing,
S-shaped supply curves, as described in subsection 4.1, Other choices might
also be relevant and could be treated in a similar way. Some theorems
concerning the dynamics are stated in subsection 4.2, In subsection 4.3 we
investigate how the price dynamics change when the demand curve is shifted
upwards, while subsection 4.4 concentrates on the role of the expectations
weight factor. In subsection 4.5 we give a geometric explanation of the fact
that chaos can occur for a large class of monotonic supply and demand
curves.

4.1. A general class of S-shaped supply curves

Concerning the supply curve we start off from the following two Economic
Considerations: (EC1) if prices are low, then supply increases slowly, because
of start-up costs and fixed production costs; (EC2) if prices are high, then
supply increases slowly, because of supply and capacity constraints,

Based on these considerations we choose a nonlinear supply curve. The
simplest smooth curve satisfying (EC1) and (EC2) is an S-shaped curve S,
with a unique inflection point p, such that (i) the slope S’ of S assumes its
maximum in p, (ii) §' is increasing from zero to its maximum for p<p and
(1) S’ is decreasing from its maximum to zero for p>p. We change
coordinates and choose the inflection point of the supply curve as the new
origin. Note that with respect to this new origin both ‘prices’ and ‘quantities’
can be negative; all (expected) ‘prices’ and ‘quantities’ will be bounded. We
write x for the (expected) price with respect to the new origin. Let the map
g: R— R satisfy the following conditions:

(G1) g is a bounded, increasing and continuously differentiable map.
(G2) g’ has a unique maximum at x=0, g’ is increasing for x<0 and g’ is
decreasing for x> 0.

We assume that the supply curve S, is given by
S;(x)=g(1x), A=0. (10)

The parameter A tunes the ‘steepness’ of the S-shape, see Fig. 1. In all our
subsequent numerical simulations we use S§;(x)=arctan(dx), but other
choices for the S-shape yield similar results.

For simplicity we assume that the demand curve is linear and decreasing:

D(x)=a— bx, acR,b>0. (11)

By taking a linear demand curve, we are able to analyse the relationship
between the nonlinearity of the supply curve and the dynamics of the model.
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Fig. 1. The S-shaped supply curve S; the parameter 1 tunes the ‘steepness’ of the S-shape. (a) The
supply curve for A small, (b) The supply curve lor 4 large.

The expected price behaviour is described by the difference equation
x,+,=f(x,) in (7). For the supply curve §, in (10) and the linear demand
curve D in (11) the map f is given by

Japow,1(¥) = —wSy(x)/b+(1—w)x+aw/b (12)

with parameters acR, b>0, 0Sw=1 and 1>0. Sometimes we will write f
instead of f, ; . ;. The derivative f7 ;1 18

S by, 2(x) =(1—w)— wS3(x)/b. (13)

Chiarella (1988) also investigated the model for a linear demand curve and
an S-shaped supply curve, by approximating the dynamics by the well
known logistic model x,,4; =g,(x,) = px,(1 —x,). Unfortunately, the quadratic
map g, is a bad approximation of the map £, because (a) the map f is either
increasing or f has two critical points (ie. f has two local extrema), while
the logistic map g, has only one critical point, and (b) the derivative of the
map f satisfies —oo < f'(x)<1—w=1, while the derivative g, of the logistic
map assumes values larger than 1 as well as values smaller than —1.

We will investigate how the dynamical behaviour of x,. ;= f(x,) depends
on the parameters a, b, w and A. From properties (G1) and (G2) it follows
that the supply curve S,(x)=g(Ax) has maximum slope at x=0. Moreover,
since g is bounded, S(x) tends to zero for |xl large. If S%(0) = b(1 —w)/w, then
f is increasing, but if §5(0) > b(1 —w)/w, then f has two critical points ¢, and
¢y, ¢ <0<, 16 two points ¢; for which f'(¢;)=0, i=1,2. Furthermore, the
map f is almost linear, with slope close to (1—w), for [x| large. The unique
fixed point x,, of f, ;.1 is (locally) stable if and only if

— 1 <8)(x,)/b<2/w—1. (14)
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We now invc.stigatc the following question: what can be said about the global
(expected) price dynamics when the equilibrium is unstable”

4.2. Stable 2-cycles and chaos

In this subsection we present three theorems concerning the global
dynamics of the model when the equilibrium is unstable. The proofs are
given in the appendix. The first result applies to the case in which the supply
and demand curves intersect at the inflection point of the supply curve, that
is, the case a=0. Theorem 2A describes a result under the extra assumption
that the supply curve is symmetric, that is S;(x)=g(4x) is an odd function.

Theorem 24. Assume that the supply curve Sy in (10) is odd. If the map
Jab, w2 in (12) satisfies f,, ., (0)<—1, then for a=0 Sabow 2 has a stable
period 2 orbit, an unstable fixed point and no other periodic points.

What happens when the supply curve is not symmetric? If Supwal®)<—1
the map f,, ., does not necessarily have a stable period 2 orbit for a=0.
However, in the asymmetric case, we do have a result similar to theorem 2A:

Theorem 2B. Let [, be the map as given in (12) and assume that
Sapw(0)<—1. Let ¢y and c,, ¢, <0<c,, be the two critical points of f. If
cz—¢y < fley)—f(cy) then there exists an a such that for a=a, f has a stable
period 2 orbit {q,,q,}, with g, <c,<c,<q,, and f has no periodic points with
period different from 1 or 2.

The condition ¢, —cy<f(¢;)— f(c,) in Theorem 2B means that the
distance between the two critical points ¢, and ¢, of f is smaller than the
distance between the two critical values f(c;) and f(c,). Furthermore note
that the stable period 2 orbit {g,,4,} lies outside the interval [¢,,c,].

Before stating the next result, we recall a definition of chaos® Let
h:R—R be a map. We say that h is a chaotic map, if the following three
properties hold: (a) there exists a set P of infinitely many unstable periodic
points with different periods, (b) there exists an uncountable set S of
aperiodic points (i.e. points which are not periodic and which do not
converge to a periodic point), and (c) h has sensitive dependence on initial

3 General references, concerning chaotic systems, are e.g. Devaney (1989), Guckenheimer and
Holmes (1986) and Gullick (1992). References concerning chaos and its application to economics
include e.g, Lorenz (1993), Brock et al. (1992), Medio {1992) and Day (1994).



322 C.H. Hommes | Journal of Economic Behavior and Organization 24 (1994) 315-335

conditions with respect to the set A=PwS. The corresponding dynamical
system X, , =h(x,) is called a (topologically) chaotic dynamical system.*

From a well known result by Li and Yorke (1975) it follows that if a
continuous map h:R—R has a period 3 orbit, then h is a chaotic map.
Hence, the existence of a period 3 orbit is a sufficient condition for chaos.
The next theorem deals with the existence of period 3 orbits for the map

fa,h.w. A

Theorem 3. Let f, ;. .., be the map in (12) and assume that O<w<1 and
b>0. If X is sufficiently large then there exists an interval I, of negative
a-values and an interval I, of positive a-values, such that the map f, , ., has a
period 3 orbit for a in 1, and for a in I,.

In fact, Theorem 3 says that if the S-shape of the supply curve is ‘steep’
(that is, if the parameter A is large, A>M, for some M >Q), then for a
suitable vertical shift of the demand curve (that is, for a suitable choice of the
parameter a) the dynamics is (topologically) chaotic. The value of M depends
on the other parameters b and w; e.g. for §,(x)=arctan(ix), b=0.25 and
w=0.3, M is about 6.5. However, we point out that even for <M chaos
may occur, since the existence of a period 3 orbit is a sufficient, but not a
necessary condition for the occurrence of chaos.

4.3. Shifting the demand curve: the parameter a

We now investigate how the price behaviour changes as the demand curve
is shifted upwards, for different S-shapes of the supply curve. In other words,
we investigate how the dynamics changes when the parameter a is increased,
for different choices of the parameter A. Note that increasing the parameter a
corresponds to shifting the graph of f,, , . vertically upwards. For the
numerical simulations in this subsection, we fix the slope of the demand
curve b=0.25 and the expectations weight factor w=0.3.

When the parameter a is sufficiently large or small the slope of the supply
curve S(x,,), at the equilibrium x,,, will be close to zero and the stability
condition (14) will be satisfied. Hence, when a is small or large we have a

“A topologically chaotic dynamical system exhibits sensitive dependence on initial conditions
with respect to the uncountable set A=P U S. Although this set is uncountable, it may have
Lebesgue measure zero. In that case chaotic time paths do occur, but only with probability zero.
On the other hand transient chaos occurs, that is many time paths may be influenced by the
uncountable set ol aperiodic points, and the (possibly long) initial part of a time path may be
characterized by erratic behaviour. For more details on the notions topological chaos and
sensitive dependence on initial conditions, in relation with economics, see e.g. Day and
Pianigiani (1991), Grandmont (1986) and Nusse and Hommes (1990).



C.H. Hommes | Journal of Economic Behavior and Organization 24 (1994 ) 315-335 323

stable equilibrium. Suppose that the parameter 1 (tuning the S-shape of the
supply curve) is large enough so that when supply and demand intersect at
the inflection point of the supply curve, the equilibrium is unstable. In that
case, according to theorem 2A, for a symmetric supply curve like S,(x)=
arctan(Ax) we have a stable period 2 orbit. The simplest possible bifurcation
scenario with respect to the parameter a is then as shown in Fig. 2a. For
ax~—09 a period doubling bifurcation occurs: the equilibrium becomes
unstable, and a new stable period 2 orbit is created. The stable period 2 orbit
remains for an interval of a-values, containing a=0. For ax~0.9 a period
halving bifurcation occurs: the stable period 2 orbit disappears and the
equilibrium becomes stable again.

Figs. 2b—{ show more bifurcation diagrams w.r.t. the parameter a, for
increasing values of the parameter A. For each picture the parameter a has
been increased in small steps of 0.005, and for each of these a-values 300
(expected) prices were plotted after a transient time of 100 periods. For
1=13.6 (Fig. 2b) additional period doubling and period halving bifurcations
occur, involving a new stable period 4 orbit. Figs. 2a and 2b show that for
small values of 1 only finitely many bifurcations occur and chaos does not
arise. For 1=3.9 (Fig. 2¢) and A=4 (Fig, 2d) the situation is much more
complicated. Infinitely many period doubling as well as infinitely many
period halving bifurcations occur. Chaotic price behaviour is possible for
certain a-values, but in that case (indicated by arrows in Fig. 2¢ and 2d) the
attractor is contained in 4 respectively 2 (small) disjoint intervals. A typical
chaotic time path exhibits regularly alternating behaviour with respect to the
unstable equilibrium, that is, in say the even time periods the value lies
above x.,, while in the odd periods the value lies below x,,. Fig. 2¢ shows
that for A=4.8 infinitely many period doubling and period halving bifurca-
tions occur, when a is increased from — .25 to 1.25. Chaos without regularly
alternating behaviour does occur for certain values of a, indicated by arrows
in Fig. 2e. In the enlargement in Fig. 2f, periodic windows can be seen, e.g.
two periodic windows of period 5 are indicated by arrows. Observe that the
bifurcation diagrams in 2a-e are symmetric with respect to the origin (the
inflection point of the supply curve). This is of course due to the fact that the
supply curve S,(x)=arctan (lx) is symmetric with respect to the origin. The
next theorem explains our previous numerical observations:

Theorem 4. Let f,, .., be the map in (12) and assume that b>0 and
O<w< 1. If 1 is sufficiently large then there exist a-values a, <a, <a; <a4<das
such that the following properties hold:

(A1) f has a globally stable fixed point, if a=<a,.
(A2) the map f is chaotic for an interval of a-values containing a,.
(A3) f has an unstable fixed point, a stable period 2 orbit, and no periodic
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Fig. 2. Bifurcation diagrams with respect to a, —125=<a=125, for different values of the
parameter A and with b=025 and w=0.3.

(a) A=3: one period doubling and one period halving bifurcation.

{b) A=3.6: finitely many period doubling and period halving bifurcations.

(c) A=3.9: infinitely many period doubling and period halving bifurcations. Chaotic dynamics
with 4-cyclic regularity (indicated by arrows) occurs.

(d) A=4: infinitely many period doubling and period halving bifurcations. Chaotic dynamics
with regularity alternating behaviour (indicated by arrows) occurs.

(e) 1=4.8: stable periodic and chaotic behaviour alternate several times. Chaotic dynamics
without regularly alternating behaviour (indicated by arrows) occurs.

(f) A=4.8, 0.3=a=1.2: enlargement of (e). Stable period 5 cycles are indicated by arrows.
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points with period different from I or 2, for an interval of a-values
containing a,.

(Ad) r}.:e map f is chaotic for an interval of a-values containing a,.

(AS) f has a globally stable fixed point, ifazas.

Conccrl.ﬁng the bifurcation scenario with respect to the parameter a, the
properties (A1)~(A5) in Theorem 4 imply the following:®

(BI) ?nﬁnitcly many period doubling bifurcations occur in the parameter-
intervals (a,,a,) and (a,,a,).

(B2) infinitely many period halving bifurcations occur in the parameter-
intervals (a,,a3) and (a4, as).

Theorem 4 implies that, if the ‘steepness’ of the S-shape of the supply curve
is large, i.e. if the parameter 1 is large, then the bifurcation scenario with
respect to the parameter a is quite complicated and both infinitely many
period doubling and infinitely many period halving bifurcations occur. Stable
periodic and chaotic behaviour alternate several times.

4.4. The expectations weight factor w

In order to understand the dynamics of the nonlinear cobweb model with
adaptive expectations, it is crucial to understand how the dynamics depends
on the expectations weight factor w. Fig. 3 shows a bifurcation diagram w.r.t.
w, 0.15=w=0.75, with the other parameters fixed at a=0.8, b=0.25 and
A=4. A stable equilibrium price occurs for w close to 0.15. As w is increased,
after infinitely many period doubling bifurcations chaotic price behaviour
arises. Next, as w is further increased, after infinitely many period halving
bifurcations chaos disappears and a stable period 2 cycle occurs for w close
to 0.75. Roughly speaking, for w close to 0 and for w close to 1, the price
behaviour is regular, while for intermediate values of w the price behaviour is
irregular. If the suppliers tend to believe that today’s price will also hold
tomorrow (w close to 1), then the result will be a stable period 2 price cycle
with large amplitude. On the other hand, if the suppliers have much more

3These bifurcation results can be proven by using the kneading theory, as developed by Milnor
and Thurston (1988, 1977), see e.g. Whitley (1983). Nusse and Yorke (1988) present a nice
example x,, , =pF(x,) (where F is a one-hump map with negative Schwarzian derivative and p
is a parameter), for which they show that both infinitely many period doubling and infinitely
many period halving bifurcations do occur, as p is increased. However, these results can not be
applied directly, since the map f,,, ; has two critical points. Guckenheimer (1980) presents
arguments how the kneading theory can be used to prove results concerning the bifurcation
scenario for maps with more than one critical point.
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—_—
w

Fig. 3. Bifurcation diagram with respect lo the expectations weightfactor w, 0.152w=0.75, with
a=0.8, b=0.25 and 1=4. As w is decreased from 0.75 to 0.45 the amplitude of the price cycles
becomes smaller, but at the same time the cycles become unstable and chaotic price oscillations
arise. As w is decreased from 0.45 to 0.15 the price oscillations become more regular again. Both
infinitely many period doubling and period halving bifurcations occur.

confidence in their own expected price than in the actual price (w close to 0}
then the price behaves like a selffulfilling prophecy and will converge to a
stable equilibrium price. If the suppliers hesitate between these two extreme
cases (w close to say 0.5), then chaotic price behaviour is the result. Note
that, as the expectations weight factor w decreases from 1 to 0, the amplitude
of the price oscillations decreases. The bifurcation scenario with respect to w
is explained by the following theorem:

Theorem 5. Let f, ., 1 be the map in (12) and assume that b>0. If 1 is
sufficiently large then there exists an a-value a* and w-values w, <w, <ws such
that the following properties hold:

(C1) f has a globally stable fixed point for 0<w<w,,

(C2) the map [ is chaotic for an interval of w-values containing w,.

(C3) f has a stable period 2 orbit and no periodic points with period different
from 1 or 2, for wa<wZ=1.

Theorem 5 implies that, if A is sufficiently large and for a suitable choice of



C.H. Hommes | Journal of Economic Behavior and Organization 24 (1994) 315-335 327

w=1l
fuw(x) V=0
w|= 0.75
w =|(0.15
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Fig. 4. Graphs of the map f, for different values of the expectations weight factor w, with
a=0.8, b=0.25, and i=4. For w close to 0 f, has a globally stable equilibrium. For w close to |
J.. has a stable period 2 cycle. For w close to 0.5 the map f, is chaotic,

the parameter g, infinitely many period doubling bifurcations occur as w is
increased from 0 to w, and infinitely many period halving bifurcations occur,
as w is increased from w, to 1. The parameter a has to be chosen in such a
way that the supply and demand curves intersect at some ‘suitable’ point
between the steep and the flat part of the S-shaped supply curve.

4.5. Geometric explanation of the occurrence of chaos

This subsection presents a geometric explanation how the combination of
adaptive expectations and nonlinear, monotonic supply and demand curves
can lead to erratic price fluctuations. First consider the case of a linear
demand and an S-shaped supply curve. To stress the dependence on w, we
write f, for the map f, ;.2 in (12). Fig. 4 shows the graphs of f,, for
different values of w. With the parameters a, b and A as in subsection 4.4, the
maps f,, satisfy the following properties:

(W1) For 0<w<1/17 the map f, is increasing and has a globally stable
fixed point. For 1/17<w<1, f,, is non-monotonic and has two critical
points.

(W2) For w=1, f, is decreasing and has a stable period 2 orbit. For w close
to 1, w#1, f, is non-monotonic and has a stable period 2 orbit.

(W3) All maps f, have the same fixed point x,. The graph of f, lies
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between the diagonal y=x and the graph of the map D 'eS. For
X<Xg we have x<f(x)<D7'S(x), and for xX>Xx,, we have
D S(x)< f,(x)<x.

We first present a geometric explanation of the bifurcation scenario in Fig.
3 of subsection 4.4. Recall from (7) that for a general supply curve S and
demand curve D, the map f,, is given by

Sulx)=(1—=w)x+wD™'S(x). (15)

For w=0, f, is the identity and for w=1, f,=D"'0S. According to (5), the
composite map D™ 'o§ is precisely the map generating the price dynamics in
the traditional cobweb model with supply curve S and demand curve D. If
demand is decreasing and supply is increasing, then D™ 'oS is decreasing.
The graph of the map [, is a weighted average of the diagonal y=x (which
is increasing) and the graph of the map D~ 'oS (which is a decreasing curve).
For our choice of supply and demand, according to property (W2), a stable
period 2 price cycle occurs for w close to 1. If w is decreased, then the
amplitude of the period 2 cycle will decrease, because of property (W3).
Meanwhile the period 2 cycle may become unstable. Apparently, in our case,
e.g. for w=0.5 the non-monotonic map f,, is chaotic, cf. Fig. 4. Hence, a
cascade of infinitely many period doubling bifurcations occurs, as w is
decreased from 1 to say 0.5. If w gets close to 0, then a globally stable
equilibrium occurs, according to property (W1). Hence, as the parameter w is
decreased from say 0.5 down to 0, a cascade of infinitely many period
halving bifurcations occurs, cf. Fig. 3.

We emphasize that this geometric explanation is quite general. In fact the
properties (W1){W3) (with the constant 1/17 in W1 replaced by some other
constant ¢, 0<e<1) hold for a large class of nonlinear supply and demand
curves. The main reason for the occurrence of chaos is the following, If
supply is increasing and demand is decreasing, then the graph of the map f,
is the weighted average of an increasing line (the diagonal y=x) and the
graph of the decreasing map D~ !0 S, If at least one of the supply or demand
curves is nonlinear, then typically there is an interval of w-values for which
the map f,, is non-monotonic, and for these w-values the price-dynamics can
be chaaotic.

In the case of linear supply and demand curves, the introduction of
adaptive expectations into the cobweb model reduces the price oscillations.
We now have a corresponding result in the case of nonlinear supply and
demand curves. In the nonlinear case, the introduction of adaptive expec-
tations into the cobweb model leads to price cycles with a smaller amplitude,
but at the same time the cycles may become unstable and chaotic price
oscillations may arise. Hence, from a quantitative point of view adaptive
expectations have a stabilizing effect, but from a qualitative point of view
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adaptive expectations can have a destabilizing effect upon the price-quantity
behaviour.

5. Concluding remarks

We have analysed the price—quantity behaviour in the cobweb model with
adaptive expectations. Chaotic price-quantity dynamics can occur, even if
both the supply and demand curves are monotonic. The erratic price
behaviour is the result of the combination of nonlinear, monotonic supply
and demand curves together with the adaptive learning of the producers.

We emphasize that our model is almost the same as the linear version of
Nerlove (1958). The only difference is that we have replaced the linear supply
curve by a nonlinear, increasing supply curve. In the linear case the price
behaviour is always regular, while in the nonlinear case the price behaviour
can be very erraticc. Nonlinear supply and demand curves, together with
adaptive cxpectations lead to price-quantity fluctuations with a smaller
amplitude, but at the same time the fluctuations may become more erratic.

It is hard to believe that the cobweb model with adaptive expectations
presents a realistic explanation of the price-quantity fluctuations in an
independent market, The model seems to be too simple to be true. However,
it is clear that nonlinear supply and demand curves are much more realistic
than linear curves, and that the nonlinear version of the model has much
more explaining capabilities than its linear counterpart, The nonlinear
cobweb model with adaptive expectations illustrates that chaos may occur,
under simple and reasonable economic assumptions. This simple example
shows that it seems to be worthwhile to investigate the role of nonlinearities
and the occurrence of chaos in more realistic economic models.

6. Appendix: Proofs of the results

Proof of Theorem 1. (i) The map f in (7) is f(x)=(1—w)x+wD™'S(x). It
follows immediately that the derivative ['(x)<1—w<1, since (D™'S) <0.
Therefore f e K, and Theorem 1(i) follows.

(i) Let feK. Write g(x)=[f(x)—(1—w)x]/w. Choose w=1—d, where
f'Sd<1. Then g'(x)=[f"(x)—(1—-w)]/w=0. Choose an arbitrary, C!
demand curve D, with D' <0, and define S=Dog as the supply curve. The
theorem now follows immediately. [J

Proof of Theorem 24. Write f for the map f, , ., in (12), S for the supply
curve S, in (10) and assume that a=0. Since the supply curve S is odd, the
map [ is odd. Hence, the critical points ¢; and ¢, of f satisfy ¢;= —c, <0
and f(¢y)=—f(c;)<0. The map f has a local maximum at ¢;, a local
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minimum at ¢,, and a unique fixed point x=0, which is unstable. Recall that
0= f(x)<1—w<lI, for |x|Zc,, so |f'(x)| assumes its maximum |f/(0)|>1 at
x=0. We consider the cases ¢, =< f(c,) and ¢, > f(c,) separately.

Case 1: ¢; = f(c,). First assume ¢, < f(c,). We also have f(c,)<c,, since f
is odd. There exist unique points d, and d,, d,<c¢, and d,>¢,, such that
f(d,)=c, and f(d;)=c,. Consequently, the critical points of the map f? are
dy, ¢y, ¢; and d,; f?* has a local minimum at ¢,, a local maximum at c¢,, and
S is strictly increasing for ¢, <x<c,. The slope of f? increases from 0 at ¢,
to its maximum value (f7(0))>>1 at 0, and then decreases to 0 again at c,.
Since f%(c,)> f(c,)>c, and f*c;)<f(c,)<c,, it follows that f2 has two
stable fixed points g, and ¢,, ¢, <g; <0 and 0<gq, <c,. The pair {q,,q,} is a
stable period 2 orbit. From the graph of f? one easily obtains that the set of
periodic points of f consists only of the unstable fixed point and the period
2 points ¢, and g,.

Similarly, one can show that, if ¢, = f(c,) then f has an unstable fixed
point, a stable period 2 orbit {c,c,}, and no other periodic points.

Case 2: ¢; > f(c,). We prove that the graph of f? is as illustrated in Fig.
5b, with two stable fixed points. It is sufficient to concentrate on positive x,
since the map f? is odd, for a=0. The positive critical points of f? are c,,
the point d, >0 such that f(d,)=c, and the two positive points « and f such
that f(«)=f(f)=c,. We have O<au<c,<f<d,. The map f? has a local
maximum at «, a local minimum at c,, a local maximum at f and a local
minimum at d,. We claim the following properties: (i) f2(c;)>c,, (ii)
LB <B, (iil) 0L (fHY()=(1-w)> <], for c; x=ZB.

First we show how the theorem follows from properties (i)—(iii). The slope
of f? decreases from its maximum value (f*(0))* at 0, to 0 at x=o. Hence,
f? has no fixed points between 0 and «. Properties (i)—(iii) yield that f2 has
a unique stable fixed point g,, with ¢,<q,<p. The pair {q,,q,}, with
q,=f(q,), is a stable period 2 orbit. From the graph of f?, it follows that
the set of periodic points of f consists of the unstable fixed point and the
period two points g; and g,. Hence, it is sufficient to prove (i)-{iii).

(i) Write c=c,=—¢,>0 and d=f(c,)=— f(¢c;)>0." Let C,=(~¢, —¢),
Fi=(—c¢d), U=(—d, —d) and V =(—d, f*c,)), see Fig. 5c. Let | be the line
with slope 1 through F,. For x<c¢,, the graph of f lies above [, since
0= f'(x)=1—w<l. Let KX and L be the points where UV intersects the x-
axis and [, respectively. Since [ intersects the x-axis at (—c—d,0) and the
point L, has x-coordinate —d, it follows that the yp-coordinate of L is
positive. Let ||4B|| denote the length of AB. We have ||C,F,||=||UL||, since I
is parallel to the diagonal y=x. Hence, c+d=||C,F,|=|UL||=|lUK]||+

KL||. Using ||UK||=d we get ||[KL||=c. We conclude that, f%c,)=|KV|>
KL||=c=¢,.

(i) Let X =(c¢, —c¢), F;=(c, —d) and m the line with slope 1 through F,,
see Fig. 5d. For x>e¢,, the graph of f lies below the line m. Let ¥ and Z
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Fig. 5.

(a) The graph of the map f with the two critical points ¢, and ¢, when ¢, > f(c;).
(b) The graph of the second iterate f2; the points &, ¢, and f# are critical points of f2.
{¢) The points C,, F,, U, ¥, K and L, and the line L

(d) The points C,, F,, X, Y and Z and the line m,

be the points at which C,X intersects m and the graph of f respectively.
We have |XF,||=||XY]|, since m has slope 1. Recall that f(f)=c;=—c
and f>c,, so that Z=(Bf(f). We obtain f=c+|XZ]
=c+||XY||+]|YZ|=c+||XF,||+||YZ[| Using c+|[XF,|=d=f(c,) we
get f=f(c,)+|/YZ|. We conclude that f*(f)=f(c,) <.

(iii) Recall that (f2)(x)=f"(f(x))'f'(x). For x between c, and p we have
0< f(x)£1—w<1 and f(x)<c¢y. If f(x)Scy then 0= f'(f(x))£1—w. Hence,
0= (f2)(x)<(1—w)?< 1, for x between ¢, and . This completes the proof of
Theorem 2A. O
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Proof of Theorem 2B. Write f for the map f,, ., in (12) and d, = f(c,)
and d,= f(c,) for the critical values of f. Let F,=(c,,d;) and F,=(c,,d;).
Choose the parameter a=a, such that FF, intersects the diagonal y=x in
the midpoint M of F F,. We claim that the theorem holds, for a=d. To
show this, change coordinates by choosing M as the new origin. Let ¢, and
¢, denote the critical points, and d, and d, the critical values with respect to
the new coordinates. Observe that ¢, =—¢é,<0 and d,=—d, <0. Since
¢, —& =c,—c¢y <dy—dy=d, —d,, we obtain |¢,|<|d,| and ¢,<d,. Theorem
2b now follows by the same arguments as in case 2 of the proof of Theorem
2A. O

Proof of Theorem 3. Let f,,,,, be asin (12), and let b>0 and 0<w<1 be
given. The supply curve S,(x)=g(4x), with g satisfying the assumptions (G1)
and (G2) in section 4.1. Denote the lower and upper bounds of S; by g_..
and gmax, that is, gma=1im,.,g(x) and gun=lim,. _; g(X), gmin <0 <gmax-
Write [ for f, ;. ,.2and S for S;. Assume that A>J,=>5b(1 —w)/wg'(0), so that
J has two critical points ¢; and ¢,, which only depend on A The map f is
increasing for x <c¢, and for x>¢,, while f is decreasing for ¢, <x<¢,.

From the properties of the map g, and by using some elementary calculus
the following properties of the supply curve S follow easily: For every &, >0,
and for every &, >0, there exists M, >0 such that for all 1> M, we have:

(i) S'(x)<e,, for all x with [x|>4,.
(") S(CZJ}gmn:"'sl and S(Cl)<gmin+ﬁl‘

By using some further elementary calculus, these properties of the supply
curve can be translated into the following properties of f: For every §,>0,
and for every &, >0, there exists M, >0 such that for all 1> M, we have

(@) |oj <85, i=1,2 (i.e. the critical points are close to 0),

(b) 1-w—g; < f(x)<1-w, if |x|>8,. (i.e. the map [ is almost linear with
slope close to 1—w, for |x| >d,).

(¢} fley)—fle;)>D—ey, with D=w/b (gnax— &min) (i.€. the distance between
the critical values is close to D).

Now choose the parameter a=g, (depending on 1), a,>0, such that
f(c;)=c,, see Fig. 6 (if we choose the parameter a=w, <0, such that
Jfley)=c,, the proof is similar). The parameter a can always be chosen in this
way, since varying a is just shifting the graph of f vertically upwards or
downwards. We will prove that if 1 is sufficiently large, then for a=«, the
following inequalities hold:

flea) <ea < f3(ea) < f¥cn). (16)

It is well known that these inequalities imply the existence of a period 3
orbit, see Li and Yorke (1975). Since f depends continuously on the
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Fig. 6. The graph of the map [ for a=u,, so that flez)=c,, and the graph of the piecewise
linear map L in (17) (dotted lines).

parameter a it follows that if (16) holds for a=a,, then it holds for an
interval of a-values containing a=a«,. Hence, it is sufficient to prove (16) for
a=a,. In order to do so we introduce a piecewise linear map L. Let
A=(cy, flcy)), B=(c, f(c,)), —p the slope of the line through A and B, and
v=1-w, see Fig. 6. The map L is defined as:

—u(x—cy)+ fle;) if xZe,

vx—cy)+ fley) if x>, (a7

un={

We claim that the following properties hold:

(L1) Lics)=f(c,) and L¥(cy)= f*(c,).

(L2) there exists an M;>0, such that for all 1> M, the following inequalities
hold: L(c,) <¢y < L¥(cy) < LE(c,).

(L3) for every & O<e<D(1—w)/2, there exists an M >0 such that for all
A= M, we have L(c,)>c,+¢ and 0< L3(c;)— f(c,) <.

From properties (L1)—(L3) it follows immediately that the inequalities in (16)
hold, for all A= M, with M =max {M,, M,}.

Property (L1) follows from the definition of L. Furthermore, observe that
if A is large then p=(f(c;)— f(c,))/(c;—c¢,) is large, because of properties (a)
and (c) above. In particular, u>1 for A large. For p>1, the only nontrivial
inequality in (L2) is L3(c,)>c,. This last inequality follows also from (L3);
therefore it is sufficient to prove (L3).

Let D>0 be defined as in property (c) above, and let 0<e<D(1—w)/2,
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Straightforward computation shows that we have L3(c;)>c,+¢ if and only if
u=>1+1/v+e/v(c;—c,). Substituting v=1—-w and p=(f(c)— fle))ler—e,)
we obtain f(c;)— f(cy)>(cs—¢)(2—w)/(1—w)+¢/(1—w). According to (a)
and (c) above, ¢,—c, is close to 0, while f(c,)— f(c;) is close to D, for all
A=M,. Since e<D(1—w)/2 it follows that there exists N >0 such that
fle)—flcs)>(cr—c))2—w)/(1—w)+e/(1—w), for all AZN. We conclude
that L*(c,)>c¢, +¢, for all AZN.

Finally we show that 0<L3(c,)— /?(¢c;)<¢, for A sufficiently large. We
have L¥(c;)—f3(c,)>0, since L¥cy)=f*(c;)>c, and L(x)> f(x), for all
Xx>c,. Let 8,, £, and M, be as above. According to (a) we have |¢;| <85, so
that L(x)=v=1—w, for all x=§,. Using (b) we find that if x=2J, then
L{x)— f(x) increases and L'(x)— f'(x)<&,. Moreover L(3,)— f(d,) < L(d,)—
Flc3) S8, =(1—w)3, and fX(c;)= f(c)) S f(e)— f(c) SW/b(S(ez)—S(e,))
W/b(g o—Emin) =D, We therefore obtain L3(cy) —f3(ez)=L(f¥c,)) -
S S L(83) — f(82) +(L'(85) — ['(82)).S Hez) S(1—w)d; +&,D. With 6, =¢/
2(1—w) and e,=¢2D we get L*(cy)—f(c;)<e. We conclude that
property (L3) holds for all A=M,, with M,=max{M,,N}. This completes
the proof of Theorem 3. O

Proof of Theorem 4. Let b>0 and 0<w <1 and let S; be the supply curve
in (10). The stability condition (14) for the equilibrium x,, is given by
— 1 <8)(x..)/b<2/w—1. When the parameter a increases, the equilibrium x,,
increases. Since the slope §’(x) of the S-shaped supply curve is close to 0 for
x large as well as for x small, it follows that the equilibrium is stable when
the parameter a is sufficiently large or sufficiently small. This proves
properties (A1) and (AS).

Let ¢, and ¢, be the critical points of f,, . ;. For A sufficiently large we
have f,, ,.40)<—1 and ¢,—c, < f(c,)— f(c,), see the proof of Theorem 3.
Property (A3) now follows immediately from Theorem 2B.

From Theorem 3 it follows that, for 1 sufficiently large there exist a
negative a-value a, and a positive a-value a4 such that f, , ., ; has a period 3
orbit for a-values close to a, and close to a, respectively. Properties (A2) and
(A4) now follow by using the result ‘Period three implies chaos’ by Li and
Yorke (1975). This completes the proof of Theorem 4. O

Proof of Theorem 5. Let b>0 be given. The derivative f, , , 2(x)=1—w—
wS(x)/b. Since §) is bounded f,, , , is increasing for w close to O.
Obviously the stability condition —1<8%(x,,)/b<2/w—1 in (14) is satisfied
for w close to 0. This proves property (C1) for all values of 1 and a.

By using Theorem 4 it follows that property (C2) holds for A sufficiently
large and a=a, as in Theorem 4. Now fix 1 and a=a, and consider the case
w=1. For w=1 f, ; ., is decreasing, so that f2, , , is increasing. Further-
more, since the supply curve §; is bounded, for w=1 f, ; .., is also bounded.
From the graph of f7, ., it follows that f, , , ; has a stable period 2 orbit




C.H. Hommes | Journal of Economic Behavior and Organization 24 (1994) 315-335 335

and no periodic points with period different from 1 or 2. Obviously, this
property will also hold for w-values close to 1. This proves property (C3) and
completes the proof of Theorem 3. O
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