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We transform a noncooperative game into a Bayesian decision problem for each 
player where the uncertainty faced by a player is the strategy choices of the other 
players, the priors of other players on the choice of other players, the priors over 
priors, and so on. We provide a complete characterization between the extent of 
knowledge about the rationality of players and their ability to successively eliminate 
strategies which are not best responses. This paper therefore provides the infor- 
mational foundations of iteratively undominated strategies and rationalizable 
strategic behavior (B.D. Bernheim, Economefrica 52 (1984) 1007-1028; D. Pearce, 
Economefrica 52 (1984), 1029-1050). Sufficient conditions are also found for Nash 
equilibrium behavior and a result akin to R. J. Aumann (Econometrica 55 (1987) 
l-18) on correlated equilibria, is derived with different hypotheses. Journal of 
Economic Literature Classification Numbers: 020, 022, 026. 0 1988 Academic PESS, hc. 

1. INTR~DUCT~~N 

This paper studies non-cooperative games from a Bayesian point of view. 
A given normal form game is transformed into a Bayesian decision 
problem in the sense of Savage [21]. The basic uncertainty a player faces 
in a game is the strategic choice of the other players. Each player therefore 

* This paper is a substantially expanded and revised version of “The Bayesian Foundations 
of Rationalizable Strategic Behavior and Nash Equilibrium Behavior.” We acknowledge the 
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Alexandre Scheinkman, and Hugo Sonnenschein have also helped to clarify our ideas. 
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has a prior over the strategy sets of the other players. In addition, each 
player is also uncertain about the priors on strategies of the other players 
and must therefore have priors on their priors, and so on. Hence, beginning 
with a game in normal form, the Bayesian approach leads to the study of 
infinite recursion of beliefs for the players-a mathematical object which 
has been investigated by Armbruster and Bilge [ 11, Bilge and Eisele [9], 
and Mertens and Zamir [ 151. 

Once the transformation of a game into a decision problem has been 
completed, solution concepts may be derived axiomatically. The infinite 
recursion of beliefs facilitate explicit axioms on (i) the motivation of players 
(e.g., they are Bayesian rational); (ii) their beliefs about the motivations 
about the other players; and (iii) the extent to which players know each 
others’ beliefs (e.g., “Bayesian rationality is common knowledge” or “player 
i believes that the other players are acting in a correlated manner, but 
player j does not”). After a set of such axioms has been imposed, the 
implications of the behavior of the Bayesian player may be derived. 

The paper applies the framework to investigation of several different sets 
of axioms which generate four existing solution concepts-iterative 
elimination of dominated strategies, rationalizable strategies of Bernheim 
[5] and Pearce [19], Nash equilibria, and correlated equilibria. The 
primary aim of this paper is to demonstrate that the infinite recursion of 
beliefs can be used to derive solution concepts axiomatically and to com- 
pare solution concepts by their underlying assumptions on beliefs. 
Armbruster and Boge [l] pioneered this approach and it is hoped that the 
application of the framework to four familiar solution concepts will 
increase the accessibility of this material. 

Clearly, a full development of this approach would be to apply infinite 
recursions to modeling of the decisions faced by each player at each 
information set in the extensive form. This may lead to axioms and 
solution concepts which resemble those of the recent refinements of Nash 
equilibrium such as Cho and Kreps [ 111. The more ambitious aim of this 
line of research is to eventually provide a systematic framework for 
comparing the many solution concepts currently available as well as 
deriving new solution concepts. 

Section 2 reviews the related literature. Section 3 provides the infinite 
recursion of beliefs as well as the Bayesian framework and Section 4 begins 
the Bayesian foundation of solution concepts and imposes rationality as an 
axiom. Section 5 studies the relationship between axioms on beliefs (such as 
Bayesian rationality, common knowledge of rationality, and the indepen- 
dence of players) and two solution concepts (rationalizability and the 
iterative elimination of strictly dominated strategies). It also provides a 
complete characterization of the implications of “everyone (believes that 
everyone)’ is rational.” Section 6 investigates several different sets of axioms 
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on beliefs which generate Nash equilibrium behavior. Of some novelty are 
the exchangeability axiom and the example which shows that in a three 
player game, even though the prior of each player is common knowledge, 
the resultant behavior may still not be consistent with Nash equilibrium 
behavior. Aumann’s [4] result on the common priors axiom and correlated 
equilibrium is formulated in Section 7. The hypotheses are slightly different 
from those of the original and our proof exploits the “common knowledge 
of a common prior.” 

2. DISCUSSION OF RELATED LITERATURE 

Harsanyi [ 121 first introduced the infinite recursion of beliefs in his 
analysis of incomplete information games and it was formally developed in 
the first three papers mentioned in Section 1. Armbruster and Bilge [ 11, 
Bilge and Eisele [9], and this paper focus on including the strategic choice 
of the other players in the basic uncertainty faced by each player. 

Bernheim [6] discusses the four solution concepts investigated here in 
very much the same spirit. Although his approach does not examine the 
knowledge and the layers of knowledge, some of the axioms he examines 
have a direct analogy with the axioms used below. Bernheim [S] and 
Pearce [19] provide the basis for the results on rationalizable equilibria in 
Section 5. 

More recently, Brandenburger and Dekel [lo] have also applied the 
Bayesian framework games. They study the relationship between correlated 
equilibria, subjective correlated equilibria, and rationalizable equilibria. 

Reny [20] presents a first step in applying the framework to extensive 
form games. He points out that the major difficulty in extensive form games 
is that “rationality is common knowledge” cannot be maintained at every 
information set as some of these are reached only if the hypothesis is 
violated. Binmore [S] is also motivated by the proliferation of solution 
concepts. His use of Turing machines and finite automata offers a contrast 
to the Bayesian approach pursued here. 

3. GAMES AS BAYESIAN DECISION PROBLEMS 

This section introduces the Bayesian framework for analyzing the follow- 
ing complete information simultaneous game: 

DEFINITION 3.1. A game with n players, I-, is a Zn-tuple (A,, . . . . A,,, 
cc7 1, . . . . D,), where: 



ON BAYESIAN SOLUTION CONCEPTS 373 

(i) Each Ai, the set of strategies (pure or mixed-the distinction is 
not important here) available to player i, is a compact metric space. 

(ii) If one denotes A = l-I:= I Ai, 0; is a function from A to R, which 
gives the payoffs to player i, for each of the possible combinations of 
strategies of all players. C’, is assumed to be continuous for each i. (When 
{xi>;!= l is of interest, we let x-~=~,+x,.) 

The remainder of this section will convert the game r into a Bayesian 
decision problem for player i. [If S is compact and metric, let d(S) be the 
set of probability measures on S endowed with the Bore1 a-algebra. 
Furthermore, d(S), endowed with the topology of weak convergence of 
measures, is compact and metrizable-see Billingsley [7] or Hildenbrand 
c1311. 

DEFINITION 3.2. A Bayesian decision problem for player i is given by 
(i) Si, a compact metric probability space endowed with the Bore1 
o-algebra (Si represents all the elements which are uncertain to player i); 
(ii) Ai, a compact set of actions available to player i; (iii) Ui: Ai x Sj + R, 
his subjective utility function; and (iv) Pi E d(S;), his subjective prior on S,. 

Given a decision problem, one can derive the structure above from more 
basic axioms, as in Savage [21]. It is important to note that Ui and P, 
characterize player i. 

DEFINITION 3.3. Let Vi: Ai x d(S;) + R be the expected subjective utility 
for player i, when he takes an action ai, and has prior Pi: Vi(aj, Pi) = 

is, ui(ai, s;) dPi(s,). T o avoid unnecessary notation, we will simply write 
V(a,, P,) instead of Vi(aj, P,). 

DEFINITION 3.4. Player i is Bayesian rational when, faced with a 
Bayesian decision problem, he chooses an action Ci~ Ai such that 

Ufi,, Pi) 2 V(ai, P,), VaiE A, 

The simultaneity of the game r implies that player i chooses a strategy in 
ignorance of the strategies chosen by the other players. Hence the basic 
uncertainty that player i faces is: 

DEFINITION 3.5. Let Sp = n,“= 1 A, = A. 

Remark. Player i’s own strategy set is included in his basic uncertainty 
because the study of correlated equilibria requires allowing the actions of 
all the players to be coordinated by some random device, so that player i’s 
own actions may be uncertain to himself before the realization of the 
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random device. However, player i’s prior on his own actions will be 
ignored until Section 7. 

Player i, who is Bayesian, must have a prior on this basic uncertainty. 
Such a prior is a point in the set of all probability measures on A: 

DEFINITION 3.6. Let Sf = d(A) = d(Sp). 

Sp does not exhaust the uncertainty faced by player i. He realizes that 
player j must have a prior on Sp as well, and this prior or the first layer 
belief of player j-a point in S-is unknown to player i Consequently, 
nj,; S/‘, the first layer beliels of the other players, is also part of the 
uncertamty faced by player i. Thus, i must have a prior in this as well and 
such a prior would be a point in: 

DEFINITION 3.7. St = A(A x n,,,S,!) = A(Spx njzi Sj). 

Notice that we have included A, the basic uncertainty space, in the 
domain of the second layer beliefs. We are permitting player i to believe 
that strategies of the players would be correlated with some first layer 
beliefs of the other players. 

Just as S,I was uncertain to player i, so is S,’ and so on. Hence each 
of these layers of beliefs of player j is uncertain to player i and i must 
successively have priors in: 

DEFINITION 3.8. S~=A(AX~~+~S,!-~)=A(S~X~~+~S~-‘). 

As before, we are allowing player i to believe that the strategies of the 
other players may be correlated with their (I- 1)st layer beliefs. Beginning 
with the basic uncertainty A, player i’s stream of priors is an infinite 
recursion of beliefs. We assume that a Bayesian player i is completely 
characterized by his infinite recursion of beliefs (equivalently, his type or 
psychology) which is a point in: 

DEFINITION 3.9. Sy = { (.s!, sf, . ..) E n,, 1 S{ : (s,!, sf, . ..) satisfies the 
minimum consistency requirement }. 

The minimum consistency requirement, discussed in detail in the Appen- 
dix, simply requires that if the probability of an event E may be computed 
using i’s Zth layer belief, sf, or his mth layer belief, sm, they must give the 
same number. 

The reader may wonder if we have exhausted all the uncertainty of 
player i. By extending our earlier argument, it may seem that since S,j is 
unknown to player i, he must have a prior on A x nj,, S,“. Such a prior 
would be a point in A(Spx n,,; S,“) as before. That is, player i should 
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have a prior on the infinite recursion of beliefs of the other players as well. 
The answer to this question is given by the fundamental mathematical 
result proven in Armbruster and Bilge [l], Boge and Eisele [9], and 
Mertens and Zamir [ 1 S]: 

THEOREM 3.1. Vi, Sy is compact and metric in the topology induced by 
the product topology on n,, , Si. Moreover, Vi there exists a canonical 
homeomorphism, 4; : S,? --t A( A x n j + , SJm ). One property of this canonical 
homeomorphism is that 

so “,“‘P,,-, [diCs? )I = s:. 
dX I+( , 

Proof: See one of the above sources. Q.E.D. 

Remark. The content of this theorem is that the two, SF and 
A(Spx nj,i S,?), are of the “same size” and although one might consider 
another layer of priors on Sp x njz, SF, it would be redundant as this 
information is already contained in S,?. The theorem allows us to define 
the universal domain of uncertainty for player i, based on the basic uncer- 
tainty space A, to be A x nj,i S,a. This space exhausts all that is uncertain 
to agent i. Consequently, the standard Bayesian approach can be applied 
by taking the space Sj = A x JJj,i S,F as the given domain of uncertainty 
and then the Bayesian player i must have a prior on this space. 

The canonical homeomorphism allows us to speak of s,?, the type of the 
agent i, and his prior on A x nj,i S,m interchangeably. If an agent is of 
type sy, his prior on A x nj,, SF is given by di(sp”). Consequently, his 
prior on A can be recovered using the canonical homeomorphism and 
taking the marginal of di(s;?) on A. Another feature of di(s,?) which we use 
extensively below is the marginal of 4i(s,?) on S,?. This is player i’s prior 
on the possible types of playerj. 

We are now in a position to define: 

DEFINITION 3.10. Given a game r, we define the Bayesian decision 
problem associated with r when player i’s beliefs are given by sy E SpO as 
(i) S,= AxSTi; (ii) Ai is the same as Ai for r; (iii) Ui(ai, si)= 
Oj(ai, Proj,..,(si)); and (iv) P;E A(Si) is given by 4i(sT), where di is the 
canonical homeomorphism between Sy and A(A x ST;) = A(Si). 

Remark, (i) It seems that the only relevant probability distribution 
for player i is the marg,_,[r5i(sy)], since V(a,, q5Jsp”)) = fs, Ui(ai, si) 
d[$;(sp)](si) =Ja_, Oi(ai, a-,) d[marg,_l[$i(sp”)]]. This seems to tell us 
that the only important part of sp” is the first order belief. The next sections 
show how one can obtain several different kinds of behavior and solution 
concepts by imposing restrictions on high orders of beliefs. 
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(ii) Notice also that since the integral is taken with respect to 
Proj.-,(si), player i’s own belief about his own actions is not relevant in 
this definition. Hence, in Definition 3.10, only the prior on the other’s 
actions enter into the expected utility calculations. The player’s own beliefs 
about his own action will become relevant only in Section 7 when restric- 
tions are imposed on these beliefs. By an abuse in notation, we define 

DEFINITION 3.11. V(a,, $i(sp”)) = V(a,, s,?). 

In summary, the central assumption of the Bayesian approach is: 

Axiom [B]. Player i in a game I- of Definition 3.1 is Bayesian and is 
characterized by an infinite recursion of beliefs sp” E Sy. Given these beliefs, 
he considers the decision he faces in r to be the same as the Bayesian 
decision problem of Definition 3.10. 

4. THE BAYESIAN FOUNDATION OF SOLUTION CONCEPTS 

Holding the strategy sets of each player constant, a game r is simply 
given by the payoff function. Hence the space of games is the space of all 
n-tuples of payoff functions. A solution concept then maps each game into 
subsets of the strategy sets of players. 

DEFINITION 4.1. Solution concepts. Let G be the n-product of the space 
of all continuous functions from n;= i Aj into the real line. G is the space of 
games, holding the strategy sets constant. A solution concept C is then a 
correspondence C: G ++ I-I:=, Ai. 

Hence given a game l-e G, C(T) c fly=, Ai is the solution concept. For 
example, C could be the Nash equilibrium mapping and Z(T) the set of 
Nash equilibria of the game r. 

Since we have taken as an axiom that the decision faced by players in r 
is the same as the Bayesian decision problem, we are led to investigate the 
beliefs of player i (i.e., restrictions on s;~) and how he behaves given these 
beliefs. In particular, given a game r and a solution concept C, what 
assumptions would result in player i taking an action consistent with the 
solution concept-that is, choose a strategy in Proj,, C(T)? Similarly, what 
assumption on beliefs and behavior for all the players would lead them to 
choose a vector of strategies which lies in Z(T)? 

We impose the following axiom from the beginning: 

Axiom [B.R.]. In the Bayesian decision problem associated with r, 
when player i has beliefs ~7, he is Bayesian rational in the sense of 
Definition 3.4. 
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5. THE BAYESIAN FOUNDATIONS OF ITERATIVELY UNDOMINATED STRATEGIES 

AND RATIONALIZABLE BEHAVIOR 

We consider two axioms on the beliefs of Bayesian rational players and 
derive solution concepts which are consistent with them. 

The first axiom [R] is that player i believes that Bayesian rationality of 
all the players is common knowledge. In the absence of any other restric- 
tion, we show that the player must then take a strategy which is 
rationalizable against correlated strategies of other players. This is 
equivalent to iterative elimination of strictly dominated strategies. We also 
show that every action which is rationalizable against correlated strategies 
can be supported by an infinite recursion of beliefs for player i which is 
consistent with “rationality is common knowledge.” Consequently, this 
assumption alone restricts the solution concept to be the iterative 
elimination of strictly dominated strategies, but no more. 

The second axiom [I] is “players act independently is common 
knowledge.” This leads to rationalizability in the sense of Bernheim [S] 
and of Pearce [19] when combined with Axioms [B], [B.R.], and [R]. 
Each rationalizable strategy can also be supported by beliefs consistent 
with the four axioms. 

DEFINITION 5.1. Iteratizlely undominated strategies or rationalizable 
strategies against correlated strategies of other players. Let 

Ay=A, 

AI= aiEAi:ThereexistspEd ,s.t. 

I Oi(ai, aPi) dp = max s Oi(Liiy a _ ;) dp . 

The iteratively undominated strategies of player i are n,aO Af. 

DEFINITION 5.2. Knowledge of Bayesian rationality. Let Kf denote 
the event that i knows everyone (knows everyone)‘- i is rational. That 
is, for 1= 1, K,! = {s,?: (a,, s,“)~suppmarg~,,,; [di(s;“)] * V(a,, s,?)= 
maxir,e A, V(cj,, s,“) > and for I> 1, 
[&(si”)] as,” E K;-‘}. 

Kf= {ST E Ki-I: sy l supp marg,; 

Remark. When player i has beliefs SF, then di(sy) is his prior on 
the strategies and infinite recursion of beliefs of the other players by 
Axiom [B]. SF E Kf implies that if player i believes that it is possible for 
player j to take strategy aj when he has beliefs s,” (that is, (aj, s,?) E 
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supp margA, x “; [#i(sl?)]), then aj must maximize player j’s expected 
subjective utility given j’s prior dj(.s,?). In other words, player i believes 
that player j is Bayesian rational or satisfies Axioms [B] and [B.R.]. 
Higher levels of knowledge of rationality are simply defined inductively. 
Hence sy E Kf implies that player i believes that player j’s beliefs are in 
Ki- I. That is, i believes that j believes rationality is known up to I- 1 
layers. This definition captures the intuitive notion of common knowledge. 
A more thorough discussion of this and a comparison with Aumann [3] 
are provided in Tan and Werlang [22]. 

Axiom [R]. Bayesian rationality is common knowledge. Vi, 
sp” E f-l,, 1 K;. 

Lemma 5.1 states that if player i believes that everyone (knows 
everyone)‘- ’ is rational, i.e., s,? E Ki, then any of the strategies he believes 
the other player may play-strategies in the support of his prior on the 
strategies of the other players (a_, E supp marg,_, [4i(sy)])-must survive 
1 rounds of ehmination of strictly dominated strategies. Moreover, 
Theorem 5.1 states that rational player i then chooses a strategy which 
survives I+ 1 rounds of elimination of strictly dominated strategies. 

LEMMA 5.1. Vl, Vi, sy~ K~+~upprnarg,~,[~~(s~)] c AL;. 

Proof of Lemma 5.1. By induction. Let sy E K!. Then 

(aj, s,“) E supp maw+ x s;” [qii(sF)] * V(aj, sy) = rntx V(., s,“) 

*a,E A,! 

since marg,-, [dj(sT)] is the required p E A(A0,) in the definition A,!. Since 
this is true for all j#i, then a-iEsuppmarg,_,[~i(sy)]~a~iEA’,. 
Hence supp marg,_, [gi,(s,“)] c ALi. Assume that SF E Ki* supp marg,_, 
[$i(sT)] c AL,. We shall show that s,” E Ki+ ’ =P supp marg,-, [di(ST)] c 
A/+ 1 

iet SOD E K!+ l. Then for (a-, s?) E supp marg, s [4j(s”)], we know by 
the definition of K!+ I that ‘SF”‘E R Hence by ‘Lhk inductive hypothesis, 
supp marg,,[#j(s,?‘)] c ALi. ‘Now:‘sy E Kf+ ’ c K,! by definition, so that 
V(a,, s,?‘) = max,, V(., s,?‘). Hence, a.E A!+ ’ since marg,_, [4j(S,‘)] E 
,4(ALj) is the required p E d(A’,) in th/e def:nition of Af’ ‘. Since this holds 
for all j, a-iEs~ppmarg,~,[~i(s~)]~aP,EA’_:’. .‘.suppmarg,-, 
(qQ”)] c AFi’. Q.E.D. 

THEOREM 5.1. Zf player i is Bayesian rational and s;+ E Kf, then he 
chooses an action ai E Al+ I. 
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Proof of Theorem 5.1. s,~ E Kf*supp marg,_,[di(s,“)] CAL,. Hence 
mars,-,d,(s,?) E d(A/,). Since i is rational, he choose an action a, s.t. 

zz 
s .41, 

DA., O-i) 41ma%A-,#i(s~)] 

since the support of marg,-, bi(sy) c ,4ki by Lemma 5.1. Hence ai~,4i+ l. 
Q.E.D. 

The following is immediate: 

THEOREM 5.2. Under Axioms [B], [B.R.], and [R], player i chooses an 
action USE n,, , AI. 

We now show that rationality does not impose more restrictions than 
what is implied by Theorem 5.2. The proofs of these two results, as well as 
several technical lemmata on measurability which are required for their 
proof, are available in Tan and Werlang [23] and Werlang [24]. The 
technical lemmata may be of interest for others who wish to apply this 
framework. 

LEMMA 5.2. Vi, Vl, Va,E Af+ ‘, there exists s;” E Kf such that 
a, E arg max,,.,, V(tii, s;?). 

Proof: See Tan and Werlang [23] or Werlang [24]. Q.E.D. 

THEOREM 5.3. Let aim n,, , A f. Then there exists s,? E ST such that 
s;+ E n,, , KI and V(a,, s,?) = maxs,tA, V(ci,, s,?). 

Proof See Tan and Werlang [23] or Werlang [24]. Q.E.D. 

We now add independence to rationality and state the analogous results 
pertaining to rationalizable strategies in the sense of Bernheim [5] and 
Pearce [ 193. It should be clear that in a precise sense, rationalizability 
requires more assumptions about the beliefs about each player than 
iterative dominance. We let Oy= i d(Ai) denote the set of probability 
measures, on l-I,“=, A,, which are products of measures on each A,. 

DEFINITION 5.3. Rationalizable strategies (Bernheim [ 51 and Pearce 
[19]). Let RP=Ai and for I> 1, let 

642:45/2-l I 
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RI= aieA,: there exists ,UE @ d(R:-‘) s.t. 
ifi 

D,(a,, a _ ,) dp = Max 
s &tA, A-, 

The rationalizable strategies of player i are n,,O Ri. 

DEFINITION 5.4. Knowledge of independence. Let If: denote the event 
“player i believes (everyone knows)‘- I acts independently.” That is, 
for I= 1, 1: = (.ry E SpC : margA_,[di(s;?)] E Oj+ ;d(Aj)} and for I> 1, 
~~={spES~:~~~suppmarg~~[~,(s”)]~~~Y:~~~’}. 

Axiom [I]. Independence is common knowledge if Vi, SF E n,, , If. 

LEMMA 5.3. Axioms [B], [B.R.], and s,+ E Kfn I: imply that player i 
takes an action in R’.+’ I . 

THEOREM 5.4. Axioms [B], [B.R.], [R], and [I] imply that player i 
takes a rationalizable strategy. 

LEMMA 5.4. Vi, Vl, Va,e AI+ ‘, there exists s;” E Kf n If such that 
ajE arg maxd,, A, V(di, s,? ). 

THEOREM 5.5. Let aiE n,,, RI. Then thereexistss,“E n/.,(KfnZf)such 
that Vi(ai, s,?) =rna~;,~~, V(cii, s,“). 

The proofs of these four results are straightforward adaptations of the 
proofs for the analogous results for iterative dominance. 

6. THE BAYESIAN FOUNDATIONS OF NASH EQUILIBRIUM 

This section is taken from Werlang [24]. 
The Nash equilibrium is by far the most widely accepted solution 

concept. It has frequently been argued that it should be a necessary 
property of any solution concept. We saw in Section 5 that the four axioms 
we discussed earlier are not sufficient to generate Nash behavior. 

6.1. Coordination and Nash Behavior 

Our first result on Nash behavior is just a formalization of the usual 
justification for the Nash concept. This is expressed in the classical quote 
below, taken from Lute and Raiffa [ 14, p. 1731: 
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Nonetheless, we continue to have one very strong argument for equilibrium 
points: if our non-cooperative theory is to lead to an n-tuple of strategy choices, 
and if it is to have the property that knowledge of the theory does not lead one to 
make a choice different from that dictated by the theory, then the strategies isolated 
by the theory must be equilibrium points. 

This justification is a simple restatement of the definition of a Nash 
equilibrium: they are the only n-tuple of actions which are consistent with 
common knowledge of the actions taken, as well as of rationality. 

Fix a game LIZ G. The formalization of the knowledge of a theory 
(equivalently, solution concept) by the players is simply that the actions 
this theory predicts are the only actions which are considered possible by 
the players. The notation is the same as in Sections 3 and 4. In particular, if 
one wants to refer to “knowledge of a theory Z(r),” where C(T) is 
contained in A=A, x ... x,4,,, we have: 

DEFINITION 6.1.1. Given C(T) contained in A, a theory, we say that 
player i knows a theory Z(f) when s,” EZ,’ = {SF ES;?: Proj,-,C(L’) 3 
supp marg,_,[b,(s,?)]}. In other words, player i knows a theory when he 
thinks other players are going to fulfill their role in this theory. 

DEFINITION 6.1.2. A theory C(T) is common knowledge in the eyes of 
player i if: si” E n,, , Zf, where C,l is given above, and VI > 2 : Ci = 
(3: E Zf- ’ : Vk # i : s; E supp marg,; [cJ~;(s,“)] * sp E Zip I}. 

Axiom [T]. Vi, the theory C(T) is common knowledge in the eyes of 
player i. 

THEOREM 6.1.1. Assume that .X(F) = {(ii,, . . . . ii,) >, that is to say, Z is a 
single-valued solution concept for r under Axiomas [B], [B.R.], and [T]. 
Then Z(T) is a Nash equilibrium. Moreover, any Nash equilibrium is 
compatible with common knowledge of the theory and common knowledge of 
rationality. 

Proqf: Since player i knows that player k is rational and player k 
knows the theory, it follows that ii, is a best response to L,, for all k # i. 
To check that Lii is a best response to d-i, it is enough to carry the same 
argument above one more layer. Observe that it was necessary to use only 
s,? E c n 2:. The second part of the theorem is immediate. Q.E.D. 

This result gives one set of assumptions on beliefs and behavior which 
justifies the Nash equilibrium concept. However, we feel that the theorem 
above also shows the weakness of the concept. The Nash equilibrium is 
played when the actions which are going to be taken are common 
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knowledge, before they have been taken. It shows the strong need for 
coordination in obtaining Nash behavior. 

From the proof of Theorem 6.1.1, it was not necessary to assume 
common knowledge of rationality and the solution concept. Rationality 
known to two layers and the solution concept known to three were 
sufficient to show that the solution concept had to be a Nash equilibrium. 
This is slightly stronger than the “knowledge of the theory” in the quote 
from Lute and Raiffa above. See Tan and Werlang [23] for the 
implications of a weaker requirement that “players know that other may 
play the Nash equilibrium” on oligopoly. 

6.2. Knowledge of other Players and Nash Equilibrium 

We now proceed to investigate other, possibly weaker, sets of 
assumptions which would lead the players to play a Nash equilibrium. 
First, let us reinterpret a Nash equilibrium in mixed strategies. The 
traditional view of a mixed strategy is literally that each player chooses a 
randomization device which “plays” the mixed strategy. In the Bayesian 
framework, an alternative interpretation of a mixed strategy for player j is 
that it is player i’s prior on the strategies of player j. Hence, in a mixed 
strategy Nash equilibrium, instead of each player actually randomizing 
according to their equilibrium strategies, one could have player i’s prior be 
the equilibrium mixed strategies of the other players. Hence, mixed 
strategies are subjective priors: 

DEFINITION 6.2.1. Let (pi, . . . . p,,) be a mixed strategy Nash equilibrium 
for the game r, where pied( We say that the n-tuple of types 
(SF, . . . . SF) Pbs the Nash equilibrium (pi, ,.., p,) if for all 
i:marg,_,[~i(s,“)]=Okfi~~=~10 ... Opi&IOPj+10 ... Op,. 

DEFINITION 6.2.2. Given an n-tuple (s;C, . . . . ST) of beliefs, we say that 
player i knows the other players if: supp marg,_, { di(sm)] = (snOi}. 

The following theorem is a characterization of Nash equilibria in two- 
person games. The first part of the theorem below is in Armbruster and 
Boge [l]. 

THEOREM 6.2.1. Let r be a two-person game. Suppose rationality is com- 
mon knowledge, and that player 1 knows player 2 and player 2 knows player 
1. Then they play a mixed strategy Nash equilibrium of the game r in the 
sense of Definition 62.1. Conversely, if (ul, ucL2) is a mixed strategy Nash 
equilibrium of T, there are beliefs (SF, sy) such that rationality is common 
knowledge, and each player knows each other, with the property that (~7, ~7) 
plays (u,, p2) in the sense of Definition 6.2.1. 
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ProoJ: Consider the pair pi = marg,, [&(.sT)] and pL2 = margAl 
[4,(s;“)]. We know that Vu, E supp CL,, a, is a best response to pLz, since 
player 2 thinks player 1 is rational, and marg,, [&($‘)I = (~7). Similarly, 
V’a, E supp pz, a2 is a best response to pi. Thus (p,, p2) is a mixed strategy 
equilibrium of the game I-. Conversely, suppose (p, , p2) is a mixed strategy 
Nash equilibrium of the game u. One can construct the infinite hierarchies 
of beliefs (~7, z Y) which will play (cl,, p2) by rationalizing in each round 
every point in the support of one of the mixed strategies by the mixed 
strategies of the opponent. These infinite hierarchies of beliefs will 
obviously satisfy the requirements of the theorem. Q.E.D. 

This result is appealing in the sense that if two players in a game are so 
familiar with each other that they know each other’s beliefs completely, 
then if rationality is also common knowledge, each player’s prior on the 
other player’s strategic choice must be one of the other player’s Nash 
equilibrium mixed strategies in a two-person game. Moreover, the two 
priors come from the same Nash equilibrium. Each player would then take 
a strategy in the support of his own equilibrium mixed strategy. 

Unfortunately, the result above is not true for games with more than two 
players. Consider a situation with three players. Each player has beliefs 
over the actions of the other players. Suppose these beliefs satisfy the 
following condition: for each player i, the support of the beliefs on the 
actions of player k (k # i) is contained in the set of best responses of player 
k against player k’s beliefs over actions of players who are not k. If there 
were only two players, the condition above would imply that the two 
players were playing a mixed strategy Nash equilibrium, according to 
Definition 6.2.1. With three players, it is not necessarily true that these 
players have a common prior. Thus, even when all the three players know 
each other, it is possible that they are not at a Nash equilibrium: this 
because they may hold prior about the actions of others which are not 
consistent with a common prior. The next example will illustrate this point. 

EXAMPLE 6.2.1. Common knowledge of rationality and knowledge of 
each other does not imply Nash behavior in three-person games. There are 
three players. The pure strategy sets are A, = {u, d}, A, = {a, b}, and 
A, = (L, R}. The payoffs are given by the two matrices shown in Fig. 1. 
The matrix on the left corresponds to player 3 playing L; the matrix on the 
right, to player 3 playing R. Define ,uV E d(A,), for i # j, and i, j = 1, 2, 3, by 

p12 = (1/2a, Wb), ~13 = (WC VW; 

~a= (1/3u, Wd), p23 = ( wL9 2/w; 

p3] = (213~~ i/34, p32 = (2/k WI. 
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FIGURE I 

Then, we have 

Setofbestresponsestop,Z@pL13=u,isA1; 

Set of best responses to pz, 0 pz3 = v2 is A z ; 

Set of best responses to cl32 0 ,uA1 = u3 is A 3. 

We now construct three infinite hierarchies of beliefs (SF, SF, sr) such that 
for every i: margAj, Ak [di(Sy)] = pLii@pLik for j, k # i, with j# k. These 
hierarchies of beliefs will be such that rationality is common knowledge 
and for all i: supp marg,,, sk [di(sp”)] = {(s,?, SF)} for j # k, and j, k # i 
(this means that each player knows the other two players). The construc- 
tions are simultaneous. The first order beliefs, s:, s:, s:, are given by 
019 fJ2, 039 respectively. The higher order beliefs will all be constructed in 
the same fashion as the second order beliefs. For example, 
s:Ed(A2xA3xS:xS:)isgivenbys,,=s,,06{(s:,s:)},where6{.}isthe 
probability measure which puts mass 1 on the set {.}. The hierarchies of 
beliefs thus built are clearly consistent and satisfy the properties required 
above. However, pLzl + p3,, p12 + p32, p13 # p23. Therefore the triple 
(s?, Srn 2 , sr) does not play a mixed strategy Nash equilibrium. 

4.3. The Exchangeability Axiom and the Nash Hypothesis 

A final axiom we study in relation to Nash behavior is exchangeability. 
Although it is less intuitive than the earlier assumptions, it is weaker and 
the first result we obtain requires no knowledge of Nash theory as in 
contrast to the earlier sections. It is therefore somewhat appealing since it 
derives Nash behavior from more basic assumptions. However, 
exchangeability itself is a strong assumption. 

Axiom [E]. Exchangeability is common knowledge among players: 
Vi: s,” E n,,, Ei, where Vi, 

for /=I: E,!={s~~S~;Vjsuppmarg~,,.,~,[~~(s~)]=C,xD, for 
some C, c Aj and Dj c S,?}; 
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[In words: the exchangeability hypothesis being common knowledge 
simply means that it is common knowledge among players that if an action 
by player j, uj~ Aj, is considered possible by player i, then he also con- 
siders it possible when player j is of any of the types s,” he believes player j 
can be.] 

Certain games have rationalizable strategies which are rationalized by a 
player i believing that player j is persistently wrong about himself (i). We 
require another restriction on beliefs to eliminate these completely incon- 
sistent beliefs. The following assumption requires that i believes that j may 
be correct about i: 

DEFINITION 6.3.2. Player i is said to be conjecturally consistent if Vj # i: 
V/s,% E supp marg,,x [d,(sp)] => $9 E supp marg,: [d,(.s,%)]. 

THEOREM 6.3.1. Suppose player i satisfies Axioms [B], [B.R.], [R], 
and [El. Let player i be conjecturally consistent. Also let r be a two-person 
game. Then, for j# i, marg,, [#,(sF)] . IS a Nash equilibrium mixed strategy 
for player j. 

Proof: Let us fix i = 1, without loss of generality. Then, if 
a, E supp marg,, [d,(sp”)], we must have, by the fact that s;” E K;” n E;“, 
that a2 is a best response against marg,, [f&(sr)], for every 
SF E supp marg,;l [di(s;” )]. But by conjectural consistency we have 
SF E supp marg,;: [&(sF)]. As pl ayer 1 thinks player 2 thinks he is rational 
(s.7 GG), we must have that (a,, s;C)~:supp[&(sF)], then a, is a best 
response to marg,,[Ql,(sr)]. By exchangeability this must be true for every 
a, E supp marg,, [&(.sF)]. Consider the pair p1 = marg,, [I] for any 
ST Emarg supp,*; [#,(s;“)], and pL2 = marg,, [#i(sp’)]. Then they form a 
Nash equilibrium, because Va , E supp ~1 i, a i is the best response against pZ, 
and Vu, E supp ,u2, a2 is the response against pi. Notice that we used in the 
proof only that s,?= E E: n K?. Q.E.D. 

This result cannot be generalized to n-person games unfortunately. See 
Werlang [24] for an example and Tan and Werlang [23] for other results 
involving exchangeability. 

7. CORRELATED EQUILIBRIUM AND COMMON PRIORS-A RESULT OF AUMANN 

Aumann [4] examines the concept of correlated equilibrium in very 
much the same spirit as our analysis of iterated dominance. He shows that 
rationality and a common prior being common knowledge gives rise to a 
correlated equilibrium. We provide that result in our framework below; the 
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hypotheses and proof here are different from Aumann’s and makes clearer 
the relationship between the assumptions and the result. 

It should be noticed that the common prior assumption is stronger than 
the earlier axioms we have examined. It resuires the highest degree of coor- 
dination among the solution concepts. A correlated eqilibrium is perhaps 
more likely in situations where players had discussed the game and agreed 
to coordinate their actions with a randomization device before actually 
playing. Such an agreement may be the basis of a common prior among 
players being common knowledge. In other situations where such coor- 
dination and centralization are unlikely, a correlated equilibrium might be 
less likely to hold. (See, however, Aumann [4].) 

DEFINITION 7.1. A correlated equilibrium is given by PE A(~J?=, A,), a 
regular probability measure, with well defined conditional probability 
measures given each ai such that for every ai E supp margAZ P, 

aj E arg max 
s 

e(ci;, a-,) dP(aeil ai). 

The interpretation of this definition (which by Aumann [2] is equivalent 
to other formulations) is that the realization of the randomizing device tells 
player i to play ai. The probability distribution of the randomization is P. 
Hence, given the recommendation ai, player i’s conditional distribution on 
the strategies of the other players is P(.Ia,). Hence if P is a correlated 
equilibrium, it must be the case that ai is a best response to the conditional 
distribution P(. ( a,). 

Several interpretations exist for a player’s belief about his own action 
(Definition 7.2(i)). One, as mentioned above, is that it is the recommen- 
dation of an agreed upon randomization device. Another is that each 
player is born knowing himself completely and knowing what he would do 
in different situations. Hence his belief about his own action is a reflection 
of his self-knowledge. In this interpretation, Nature is the randomization 
device. See Aumann [4] for a more complete discussion. 

DEFINITION 7.2. We say that player i’s beliefs come from a prior 
PEA(nrzl Aj)ifsyECPP= {~~ESF: there exists a, E supp marg,, P such 
that 

ti) s”PP margA, [ditsi”)l = iai>? 

(ii) mark, cd;@?)] = p(‘i ai)>. 
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Player i believes that the other player’s beliefs come from the common 
prior P if: 

s,? E CP! = {sy E Sa : Vj# i, V(a,, SF) e supp marg [AJAX], 
A, x S,* 

mAy3 C4ji(sj’ )I = PC. I a,) 1. 
/ 

For 13 2, let 

CPi= {sy ECPf-‘: Vj#i, V’s? Esupp;marg [di(sp)], s,” ECPj-‘}. 

Axiom [CP]. The common prior PE d(n;=, Aj) is common knowl- 
edge: Vi, sp” E nlr,, CPf. 

Remark. (i) By constructing the beliefs of player i, one can show 
that for any aiEsupp marg,, P, there is sp” E nr,,, CP: such that 
supp marg,, [di(s,?)] = {uj}. In particular, for any i, it can be shown that 

ss E n CPf supp margA,[di(s,‘)] = supp marg,, P. 
I,0 

(ii) Notice that it is only here that player i’s belief about his own 
strategies becomes important since it comes from a common prior. 

(iii) In Definition 7.2 we could have defined CPP = (sy ES,? : 
marg,#,(sim) = P} to begin with and then redefine rationality to mean ai 
in supp margA,[di(s,?‘)] implies that ai is a best response against 
margA_,[di(sy)]. This definition was used in Aumann [4]. However, this 
would make P a correlated equilibrium by delinition. We show in 
Theorem 7.1 that Axioms [R] and [CP] can be exploited more fully. 

(iv) Notice that the common prior is in d(n7-r Aj) rather than in 
d(n;= i S,). Definition 7.2(i, ii) only restricts player i’s first layer beliefs on 
actions but not higher order beliefs. It is only with common knowledge of a 
common prior-imposed in the remainder of Definition 7.2 and Axiom 
[CP] that higher order beliefs are restricted. 

In Definition 7.2, there is no presumption of optimality or rationality yet. 
Definition 7.2(i) requires that i’s belief on his own strategies be a unit mass 
point and that the belief on the actions of the other players be P(- 1 ai). This 
we feel captures Aumann’s intention that a player’s beliefs be a posterior 
(given the recommendation ai by the randomization device) derived from a 
common prior. However, there is no guarantee that i will play ui. The 
optimality of ui against P(.( a,) is derived from a more subtle argument: 
i believes that j’s belief comes from P, moreover, i believes that j believes i 
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is rational, so that since j may believe that i’s action is ai when i’s belief on 
actions is P(. 1 a,), then ai must be optimal against P(. 1 a,). 

THEOREM 7.1 (Aumann). Suppose Axioms [B] and [B.R.] hold. Con- 
sider a prior PELI(~:=~ Aj). Zf for any (SF, . . . . s,“)~n;=,(fi:=,CPj), 
Axiom [R] is satisfied, then P is a correlated equilibrium. 

Proof: We need to show that Vi, Vu, G supp marg,, P, 

u,E arg max V(ci,, P(.l a,)). (*I 
2,~ A, 

Let sp” E nfzO CPf. Then for all (a,, s,?) E supp margA,x sy [#j(sy)], 
margA-,[6ji(sp”)l =p(‘Ial) since s” E CP,! . Moreover, since sy E Kf , aj E 
arg max,,, A, V(ci,, P(. 1 ai)). This is true for any uj~ supp marg.,,, [#i(s”)]. 
Moreover, by the remark following Definition 7.2, 

then 

u SUPP ma%A,Cdi(sp” )I 
spEn:=,CP~ 

= u supp margA, p('l supp margA,[h(s?)l) 

S: E nf=, CP; 

= U supp margq P(. 1 ui) = supp marg,, P. 
a, E supp margA,P 

So that (*) is true for j # i. 
What remains is to show this for player i. 
Since ST E CP: n Kf, for any ST E supp marg,,= [#j(sy)], if (ai, s”) E 

SUPP margApxs: Cdj(S,m)l, maC3Am,[di(sp”)l = P(.lai) and a,EarfS maGEA, 
u.7 pt. 14). 

Since this is true for any ui E supp marg,, [dj(s,?)] and 

U U s”pp margA,(dl,(sl’ 1) = suPP margA, p3 

SF in:,, CP; s~~~U~~~~~~S~ MS,~II 

it is true for any USE supp marg,, P. Hence, Vi, tlu,~ supp marg,, P, 
~~~argrnax,..~ V(-, P(.Iui)). Q.E.D. 

Remark. Notice that since we required only SF E nf=, CPin Kf it is 
weaker than requiring that the prior P and rationality be common 
knowledge. In Aumann [4], the model implcitily had common knowledge 
of rationality and the prior built in at every state of the world. 



ON BAYESIAN SOLUTION CONCEPTS 389 

This theorem is really another version of Theorem 6.1.1 in disguise. 
Correlated equilibria are Nash equilibria of a game with an expanded 
strategy space. 

Aumann [4] discusses the concept of subjective correlated equilibrium. 
This is the case where players are permitted to have difP---nt priors and 
may believe that other players have different prioo This is, by 
Theorem 5.2, the same as the iteratively undominated strategies. 

APPENDIX 

In the definition of Si one could include correlation among all the 
previous layers of beliefs. This is the approach followed by Mertens and 
Zamir [ 151, but given the consistency requirements they have (as we do 
below), they show this is equivalent to the framework we use here. 

Observe that an arbitrary Zth order belief contains information about all 
beliefs of order less than 1. An obvious requirement that should hold is that 
the first order beliefs of player i should be the marginal of his second order 
belief on his basic uncertainty. We will construct a way of determining the 
lower order beliefs, given a belief of a certain order. This is the approach of 
Myerson [ 17, 181. However, as it is very enlightening, we think it is worth 
going through it. Let us impose on a player’s beliefs the minimal consistency 
requirement: that if it is possible to evaluate the probability of an event 
through his Ith order beliefs and his kth order beliefs, with 1 #k, then both 
the probabilities agree. Define inductively the functions that will recover 
the (I - 1 )st order beliefs, given Ith order beliefs, by: 

For />2: y/-I: S! I? S!k’. 

For Il2: Y~(.$)(E)=J$(E~S~~) VEcSP. 

For I> 3: by induction on I we assume (Yj-‘);= i defined, and 
Y’-‘(sf)(E)=sf(((& (sj-‘)i=i)~SP~ Skil; (s;, (Y~-2(s:-1)),ifr)~E}), 
VE c Sp x Ski’. 

We have then: 

PROPOSITION A.l. Suppose all players are aware that each of them 
satisfy the minimum consistency requirement. Then Vi, VI > 2: !P- ‘(si) = 
s!- 1 I . 

Proof Let us prove the proposition by induction. For I= 2, let E c Sp. 
Then the event E (event = measurable set) is evaluated by s,? as s:(E). 
However, E is the same as E x Sti evaluated by sf . Therefore by the 
consistency of the players: s!(E) = s?( E x S? i) = Y,‘(sj!). They also know 
sj = Y;(.$), because they know the others are consistent. Let us assume it is 
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true for 12 2. We will prove that it is true for I+ 1. If it is true for 1, we 
know that Vj= 1, . . . . n, s,!- i = !P- ‘(.sj). Given the event E c Sp x Ski’, 
define E* c Ss x S/, by 

E* = {(s;, (sf),+Jd~x SLi; (sp, (Y;-‘(s;))~+&E}. 

By the induction hypothesis we have that 

E*=~(~~,(s~)~~;)ES~XS’~~;(S~,(S~~’)~~,)EE). 

Therefore E* and E are the “same” events (same in the sense used before: 
one is true if and only if the other is). Hence by the hypothesis s:(E) = 
si+ ‘(E*). But Yi(.sf+ l)(E) =sf+ ‘(E*), and so the result follows. Q.E.D. 

Given the proposition above, we will restrict ourselves to consistent 
beliefs. Therefore the set of all possible beliefs for player i is 
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