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Abstract
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in treatment effect models, at the crossroads of the“Heckit”model and the bounding

approach of Lee (2009). As a substitute for the instrument needed in sample selec-

tivity correction models, we use information on the number of prior calls made to

each individual before obtaining a response to the survey. We obtain sharp bounds
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1 Introduction

Sample attrition is a pervasive problem for surveys in the social sciences. The damage

appears particularly clearly in randomized trials. Random assignment to treatment cre-

ates a treatment group and a control group that are at the same time comparable and

representative of some initial population. In the presence of sample attrition, however,

the observed treatment and control groups may not be comparable anymore, threatening

the internal validity of the experiment. This issue is serious in any type of treatment

model, and practitioners have long been aware of the threat posed by data collection in

this context.1 Campbell (1969) lists “experimental mortality” (i.e., “the differential loss of

respondents from comparison groups”) as one of the nine threats to the internal validity of

experimental and quasi-experimental designs. The concern is frequently raised in applied

economics: examples include Hausman and Wise (1979) or the studies in the special issue

of The Journal of Human Resources (spring 1998) dedicated to Attrition in Longitudinal

Surveys.

The statistical and econometric literature has developed a variety of tools to deal with

sample selectivity – of which attrition is one aspect – starting with seminal papers by

Heckman (1976 and 1979) and becoming less and less parametric up to the “worst-case”,

assumption-free approach developed by Horowitz and Manski (1995, 1998 and 2000). The

toolbox also includes weighting procedures based on the assumption that data is “miss-

ing at random” conditional on some observables. Yet, applied economists may still feel

perplexed in practice. While the virtues of conservative bounds à la Horowitz-Manski are

clear, with commonly observed attrition rates above 15%, they yield quite wide identified

1For instance, the education scientist McCall, writing in the early 1920s before R.A.

Fisher’s reference book The Design of Experiments (1935) was published, observed:

”There are excellent books and courses of instruction dealing with the statistical ma-

nipulation of experimental data, but there is little help to be found on the methods of

securing adequate and proper data to which to apply statistical procedures” (McCall,

1923).
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sets. The other two approaches yield point identification. Yet missing-at-random assump-

tions are often hardly credible, given evidence in several empirical studies that attrition

is correlated with the outcomes of interest.2 Similarly, sample selectivity procedures face

the practical difficulty of finding a credible instrument: “The practical limitation to rely-

ing on exclusion restrictions for the sample selection problem is that there may not exist

credible ‘instruments’ that can be excluded from the outcome equation” (Lee, 2009, p.

1080). Middle-ground approaches such as Lee (2009) are a valuable compromise; in some

instances however, they still yield quite large identified sets (e.g., Kremer et al., 2009).

This paper proposes a novel and simple approach to correct sample selection bias result-

ing from non-response, at the crossroads of semi-parametric forms of the “Heckit” model

and the bounding approach of Lee (2009). As a substitute for the instrument needed in

sample selectivity correction models, we show that we can use basic information on the

number of attempts made to each individual before obtaining a response. The method

can be applied whenever data collection entails sequential efforts to obtain a response, for

instance trying to call several times in a phone survey, making several visits to the respon-

dent’s home, or even gradually offering higher incentives (gifts) to potential respondents.

It does not require the randomization of survey effort, as was proposed by DiNardo et

al. (2006): as a result, there is no voluntary loss of information, as survey effort can be

maximal for the whole sample. Further, correction can be made ex post, as long as the

number of attempts have been recorded. We obtain non-parametric identification in a

model of heterogeneous treatment, provided that the selection mechanism can be repre-

sented by the latent variable threshold-crossing selection model, which is used in most

of the literature.3 Most of the time, only (sharp) bounds are identified, but this is in

fact a common feature of selectivity models when there is no instrument or when instru-

2Evidence is obtained by comparing survey data with another, more comprehensive

data source (e.g., administrative data, or reports from parents or neighbors of non-

respondents). See for instance Behrman et al. (2009) or the application in Behaghel

et al. (2012).
3Vytlacil (2002) discusses the implications of this model.
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ments take a limited number of values. Because we bring information into the model, the

identified set can be smaller than in Lee (2009).

The intuition of our result is the following. In the latent variable threshold-crossing

selection model, individuals respond to the survey depending on an unobserved variable,

call it V , that can be interpreted as reluctance to respond. Treatment may affect the

overall willingness of people to participate in a survey, but this model assumes that it

does not change their relative rank in V within the treatment or control groups. As an

example, assume that the response rate is lower in the control group, implying that the

treatment has induced some more“reluctant”(high V ) individuals to respond. As a result,

respondent individuals in the treatment and control groups have different distributions

of V , so that estimates of the treatment effect may be biased if V is correlated with

counterfactual outcomes.

A non-parametric way to neutralize this bias is thus to form a subset of treatment and

control individuals that responded to the survey and have the same distribution of V .

This is illustrated in Figure 1. Because people are ranked according to V in the single-

index model, if 60% of the respondents in a group answered before the 18th call, they

must have the 60% lowest values of V (those who responded after the 18th call or never

must have the 40% highest values of V ). If we have two groups (treatment and control)

in which the answering behavior differs, it remains true that, if 60% of the respondents

in the treatment group answered before the 18th call, and 60% of the respondents in

the control group answered before the 20th call, then each of these subsamples contains

the 60% lowest values of V in their group. When the groups are randomized (or can

be considered initially similar for any other reason), the 60% lowest V ’s in each group

represent the same population. The insight of this paper is that when survey attempts

are recorded, these two groups are identified in the data, and they can be compared with

no risk of selection bias, because they have the same distribution of V . Bounds arise when

we cannot find numbers of attempts that perfectly equalize the response rates in the two

groups. Implementation then follows Lee (2009) and uses quantiles of the distribution of

the outcome for marginal respondents to build sharp bounds.
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This paper contributes to a wide econometric literature on sample selection reaching

back forty years, overviewed by Manski (1989) and some 20 years later by Lee (2009). Lee

(2009) illustrates how the two main approaches – the latent variable selection model and

the bounding approaches – can converge when they use the same monotonicity assump-

tions on response behavior. An important distinction however, is whether the method

entails using an instrument. The fact that an instrument is needed in order for the iden-

tification of the Heckit model not to depend on arbitrary parametric assumptions is often

considered as a major drawback of the approach, as plausible instruments are rarely avail-

able. Our contribution to this literature is to show that the instrument may not be the

issue: actual information on response conditions is enough to identify the same param-

eter as one would obtain with an ideal instrument that would randomly vary the data

collection effort across individuals.

However, our main contribution is probably to provide an additional, simple tool for

practitioners. In this respect, it is related to proposals by Lee (2009) and DiNardo et al.

(2006). The comparison with Lee (2009) is detailed in the paper. As noted above, Lee’s

procedure is beginning to be used in applied studies but may lead to wide identified sets.

DiNardo et al. (2006) propose to include the randomization of survey effort in the design

of surveys, as a way to generate instruments. They acknowledge that it may be difficult

to persuade survey administrators to do so, and suggest having only two levels of effort

(for instance, a maximum of 1 or 2 calls),4 but do not recognize the fact that recording

the actual number of calls or visits needed provides the same information. In fact, the

approach proposed here, where the effort is maximal for every individual, is superior to

the randomization of survey effort, because such randomization does not maximize the

number of respondents.

In the next section, we first introduce the framework and notations. We then recall and

extend existing results on selection correction with instruments. Section 4 presents our

4“Until economists persuade data collection administrators of the value of sample se-

lection correction, obtaining a binary [instrument for sample selectivity correction] will

remain an ambitious goal practically, if not econometrically” DiNardo et al., 2006, p. 10.
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approach in the case when survey effort can be thought as continuous. This case conveys

the main intuition for our identification result. Section 5 considers the more realistic case

when survey effort is discrete. Finally, we compare our approach to existing bounding

approaches. An application of the method is provided in the working document version

of this paper Behaghel et al. (2012).

2 Framework and notations

We use the potential outcome framework. Z ∈ {0, 1} denotes the random assignment into

treatment and y(Z) is the potential outcome under assignment (or treatment) Z.5 The

observed outcome is y = y(1)Z + y(0)(1 − Z). The parameter of interest is the average

treatment effect:

E(y(1)− y(0)) (1)

If Z is independent from (y(0), y(1)), as can be assumed under random assignment, then

the average treatment effect can be estimated by comparing the empirical counterparts

of E(y|Z = 1) and E(y|Z = 0).

Attrition bias may arise from non-observation of the value of y, resulting from non-

response behavior (whether literally or as a result of a missing observation in any sort of

data). Let us define potential response under assignment Z as R(Z) ∈ {0, 1}. Just as for

the outcome, response behavior is denoted by R(0) when a person is untreated and R(1)

when he is treated. Observed response behavior is R = R(1)Z +R(0)(1− Z).

When there is non-response, the observed mean value of y in the treatment group and

in the control group measures E(y|R = 1, Z = 1) and E(y|R = 1, Z = 0) respectively.

5We assume perfect compliance: treatment is equal to assignment (equivalently, if

there is imperfect compliance, we consider the intention-to-treat effect).
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Therefore, the “naive” average treatment effect estimator measures:

E(y|R = 1, Z = 1)− E(y|R = 1, Z = 0) = E(y(1)|R(1) = 1)− E(y(0)|R(0) = 1)

= E(y(1)− y(0)) + ∆1 + ∆2,

where the first equality obtains if Z is independent from (y(0), y(1)) and from (R(0), R(1)),

and:

∆1 = E(y(1)− y(0)|R(1) = 1)− E(y(1)− y(0))

∆2 = E(y(0)|R(1) = 1)− E(y(0)|R(0) = 1).

The first source of bias, ∆1, results from treatment effect heterogeneity. It is present

whenever the average treatment effect on those who respond to the survey (R(1) = 1)

is different from the effect in the whole population. The second source of bias, ∆2,

is a selection bias: it occurs whenever treated and control respondents are different in

the sense that they have different counterfactuals y(0). Neither of these terms can be

directly estimated because they require E(y(0)|R(1) = 1) but R(1) and y(0) are not

jointly observed.

Bias ∆1 concerns the lack of external validity. In the absence of selection bias, the

“naive” estimator would be consistent for a population of respondents to a given survey,

but may not extend to the general population.6 In contrast, the problem raised by bias

∆2 is one of internal validity. Even if our interest lies in E(y(1) − y(0)|R(1) = 1), this

would not be estimated consistently if the second type of bias is present.

In the following, we restrict the parameter of interest to the average treatment effect

6An externally valid estimator can be recovered, however, using observed covariates X

that are available both for respondents and non-respondents (for instance from adminis-

trative data) and assuming some form of homogeneity of treatment impact conditional on

X, as in Huber (2012, 2013) or Angrist and Fernandez-Val (2013).
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on respondents, and we consider hypotheses under which the selection bias (∆2) can be

corrected, if present.

Given the fundamental identification issue that characterizes the selection bias (R(1)

and y(0) are not jointly observed), point identification of the causal treatment effect

requires restrictions. Following Heckman (1976, 1979), a standard approach to sample

selection correction uses the latent selection model, in which identification requires in-

struments, i.e. determinants of selection (here response behavior) that do not determine

the counterfactual outcomes. We present a semi-parametric version of this model but ar-

gue that proper instruments are difficult to find. We then show that, provided the survey

records the number of calls made to each individual before they respond, identification

can be obtained using that same model, even in the absence of instruments.

We assume the following latent variable threshold-crossing selection model:

Assumption 1 1. (Latent variable threshold-crossing response model)

R = 1(V < p(W,Z)), (2)

2. (Common support) p(W, 0) and p(W, 1) have non-empty common support P as W

varies. Let p̄ denote the upper bound of P.

Equation (2) adds some structure to the relation between response and treatment status,

R(Z). W is any variable related to response behavior, such as response incentives. It can

also be considered as the maximum number of calls that can be made in the attempt to

survey each individual, which will prove useful in the following sections. p is an unknown

function, and without any loss of generality, V follows a uniform distribution over [0, 1],

so that p(W,Z) is the response rate as a function of W and Z. V is not observed and

can be interpreted as the individual reluctance to respond to surveys. This latent variable

threshold-crossing model is a fundamental element of the selectivity correction literature.

Following Vytlacil’s (2002) equivalence result, the key embedded assumption is a form of
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monotonicity: different individuals must not react in opposite ways to a given change in

the pair (W,Z).7

3 Selectivity correction with instruments

Here we consider that in both treatment and control, W varies randomly across observa-

tions. We therefore have the following independence assumption:

Assumption 2

(W,Z) ⊥ y(0), y(1), V. (3)

We then obtain the following identification result:

Proposition 1 : Identification using an instrument for response behavior.

Under assumptions 1 and 2, E(y(1) − y(0)|V < p̄) is identified if there exist w0 and w1

in the data such that p(w0, 0) = p(w1, 1) = p̄. Then:

E(y(1)− y(0)|V < p̄) = E(y|R = 1,W = w1, Z = 1)− E(y|R = 1,W = w0, Z = 0). (4)

7Specifically, Vytlacil (2002) shows that the index model is equivalent to assum-

ing the following condition: for all w,w′, z, z′, either Ri(w, z) ≥ Ri(w
′, z′) ∀ i, or

Ri(w, z) ≤ Ri(w
′, z′) ∀ i (where R(w, z) is the response function resulting from equation

2). This monotonicity assumption is violated if assignment to treatment Z encourages

some individuals to respond to the survey, but discourages others. Also, the condition

does not hold if some individuals are only sensitive to W , and others only to Z. Assume

for instance that W takes only two values (each person is assigned to 1 or 2 attempts).

There may be a person i1 who responds only if treated: Ri1(2, 0) < Ri1(1, 1). By con-

trast, person i2 is only available at the second call, but responds to the survey irrespective

of treatment assignment: Ri1(2, 0) > Ri1(1, 1). In that case, W and Z have monotonic

impacts, but no single latent variable threshold-crossing response model exists.
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This proposition builds on well-known properties of index selection models and adapts

the semi-parametric identification results of Das, Newey and Vella (2003) to our setting

with a binary regressor of interest and heterogeneous treatment effects. Newey (2007) and

Huber (2012, 2013) provide similar identification results for the non-separable case in the

presence of a continuous instrument W . The proof is given in appendix A.1.1. To interpret

equation (4), it is useful to think of V as an individual reluctance to respond to surveys.

As W and Z are randomly assigned, V is equally distributed across treatment and control

groups, and across different values of the instrument W .8 Given the response model in

(2), the population of respondents is uniquely characterized by the value of p(W,Z). If

there are two couples of survey effort (w0, 0) and (w1, 1) such that p(w0, 0) = p(w1, 1) = p̄,

then these two couples are simply different ways of isolating the same subpopulation of

respondents. Therefore, comparing y across these two subpopulations (treatment and

control) directly yields the impact of Z on this specific subpopulation; i.e., the average

treatment effect for those individuals with V < p̄. Without further restrictions, we can

only identify the parameter on the common support of respondents. The popular Heckman

selectivity correction model is a version of this, with several restrictions, notably treatment

effect homogeneity.

Of course, equation (4) is only useful to the extent that there exists such an instrument

W that varies sufficiently to entail a non-empty common support P. Unless this is planned

in advance, it is usually extremely difficult to extract variables from the data that have

credible exogeneity properties and sufficient power to influence response. Therefore, as

suggested above, randomizing the survey effort could be a natural way to generate the

instrument W . We could, for instance, randomly assign the number of attempts to call

8Notice that, as long as (W,Z) is independent from V and counterfactuals y(0) and

y(1), W could be randomized conditional on Z, for instance if one wants to put more

survey effort in the control group.
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each individual,9 or the value of the gift offered to those who respond. However, ran-

domizing the data collection effort means wasting part of the sample (that on which data

collection effort is not maximal). In most contexts, survey costs are high and the number

of observations is limited; this may explain why, to the best of our knowledge, survey

effort is not randomized in practice.

4 Number of given calls as a substitute for instru-

ments

We now consider the case where W is a maximum number of phone calls, home visits

or similar attempts to reach people, and it does not vary in the sample (everyone could

potentially receive this maximum number of calls). We call N the number of attempts

made before a person is actually reached. The main insight of this paper is that W can be

set to the same value for all individuals in the sample: provided that N is recorded for each

observation, the treatment impact is still identified. Therefore, ex ante randomization of

W is not required and there is no consecutive loss of efficiency.

When W is set to W = wmax for all individuals in the sample, assumption 2 still holds

formally, but in a degenerate sense for W . It does imply Z⊥y(0), y(1), V , conditional on

W = wmax.

We also add some structure to the function p(., .):10

Assumption 3

p(W,Z) is non-decreasing in W, ∀Z. (5)

9Specifically, we could design the survey so that it is randomly decided that worker i

will be called a maximum number of times Wi before considering him as a non-respondent,

worker j will be called a maximum number of times Wj, and so on.
10Notice that assumption 3 is not implied by the latent variable model (equation 2), as

the function p was so far unspecified.
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In the present context, where W is a maximum number of phone calls or visits, this is a

very natural assumption, since contacts are iterative: the possibility of contacting a person

one more time should not decrease the likelihood of that person eventually answering the

survey. This is particularly reasonable if subjects are not aware of the planned maximum

number of attempts.

Without loss of generality, let us consider the case where the share of respondents is

higher among the treated, i.e., p(wmax, 0) ≤ p(wmax, 1). Assume there exists w1 such that:

p(wmax, 0) = p(w1, 1). w1 is the maximum number of calls that would be sufficient to

obtain exactly the same response rate among the treated (Z = 1) as among the non-

treated (Z = 0). Because of assumption 3, w1 ≤ wmax. Notice that, if W was continous,

w1 would always exist. As W is in essence discrete in the present setup (number of calls

or attempts), the existence of such a w1 in practice is most unlikely. Here, however, we

assume its existence for clarity: to present the identification result in a simple case and

give the basic intuition. In practice, discreteness will entail identification of bounds rather

than point estimates, and we will turn to this complication in the next section. For now,

we have the following identification result:

Proposition 2 : Identification using information on the number of calls. Un-

der assumptions 1, 2 and 3, and if p(wmax, 0) ≤ p(wmax, 1), E(y(1)−y(0)|V < p(wmax, 0))

is identified if there exists w1 in the data such that p(wmax, 0) = p(w1, 1). Then:

E(y(1)− y(0)|V < p(wmax, 0)) = E(y|N ≤ w1, Z = 1)− E(y|N ≤ wmax, Z = 0), (6)

where w1 is identified from Pr(N ≤ w1|Z = 1) = Pr(N ≤ wmax|Z = 0).11

If p(wmax, 0) ≥ p(wmax, 1), then we define w0 similarly such that p(w0, 0) = p(wmax, 1)

and we have

E(y(1)− y(0)|V < p(wmax, 1)) = E(y|N ≤ wmax, Z = 1)− E(y|N ≤ w0, Z = 0), (7)

11Note that the set of individuals with N ≤ w1 is observable because w1 ≤ wmax.
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where w0 is identified from Pr(N ≤ wmax|Z = 1) = Pr(N ≤ w0|Z = 0).

The proof is given in appendix A.1.2. The result is valid for any maximum number of

calls wmax. If wmax is set high enough, we could have min (p(wmax, 0), p(wmax, 1)) = p̄ and

we would identify E(y(1)− y(0)|V < p̄) just as before.

To understand this identification result, take the case p(wmax, 0) ≤ p(wmax, 1). Equation

(6) means that E(y(1) − y(0)|V ≤ p(wmax, 0)) is point-identified by simply truncating

the treatment sample. The average outcome of those control individuals that respond

before the wmaxth call (all respondents in that case) is E(y|N ≤ wmax, Z = 0) and this

identifies E(y(0)|V < p(wmax, 0)). The average outcome of those treatment individuals

that respond before the w1th call (a subset of respondents in that case) is E(y|N ≤

w1, Z = 1) and this identifies E(y(1)|V < p(wmax, 0)). The sample selection problem is

due to the fact that those who respond to the survey in the treatment group are no longer

comparable to respondents from the control group, as the treatment affects response

behavior. In our example, the treatment has induced some additional individuals to

respond: let us call them the “marginal respondents”. The latent variable response model

implies that individuals can be ranked according to their reluctance to respond (V ), and

this ranking is not modified by assignment to treatment. It is then possible to truncate

the treatment sample by removing those marginal respondents. In proposition 1, this

is done by manipulating W . Proposition 2 states that this is not necessary and we can

truncate the sample simply by knowing who, among the treated, responded within w1

calls.

To understand this latter aspect, note that, by definition of N and given the latent

variable response model given by equation (2):

V < p(w, z)⇔ (N ≤ w,Z = z). (8)

This is proved formally in appendix A.1.2, but it is natural that, when variable W is

a maximum number of contacts, the response model means that a person in treatment
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group z who has V such that V < p(w, z) will be reached at most at the wth call. This

is equivalent to saying that his N will be at most w. For this reason, N is sufficient to

characterize individuals in terms of their latent V and we do not need exogenous variation

in W . Respondents in the control group are such that V < p(wmax, 0). We need to identify

respondents in the treatment group such that V < p(wmax, 0) = p(w1, 1). Equivalence (8)

states that they are fully characterized by N ≤ w1.

Figure 1 illustrates this process. Individuals are ranked according to their unobserved

reluctance to respond V , and treatment does not affect the ranking, so that below any

level of the latent reluctance to respond, people with the same characteristics are present

in both the control group and the treatment group. Without actual instruments, the

information provided by the number of calls before the person responded acts as a proxy

for V and enables us to identify the marginal respondents. They can therefore be removed

from the treatment–control comparison, thus restoring identification. Identification is

only “local”, however, in the sense that it is only valid for a subpopulation of respondents

(the respondents in the group with the lowest response rate or any subgroup who have

responded after fewer calls, i.e. individuals with rather low levels of reluctance to respond).

In Figure 1, individuals have been called up to 20 times and the response rate is lower

in the control group. In the treatment group, the same response rate as in the control

group is obtained for individuals that have responded within 18 calls (thus in this example,

w1=18). People who responded at the 19th or 20th call have no counterpart in the control

group, so they are removed: comparing outcomes in the remaining control and treatment

samples maintains balanced groups in terms of response behavior, thus neutralizing the

selectivity bias.

Proposition 2 appears to be widely applicable. Phone surveys can routinely keep track

of the number of attempts that were made to call each person, so that the data requirement

is limited. Assumption 1 is standard for a selectivity correction model and is discussed at

length in Vytlacil (2002). Assumption 2 is standard for the identification of any causal

parameter (as it boils down to Z⊥y(0), y(1), V in our setup). Assumption 3 is the one that

is specific to our approach. But it is extremely reasonable when one considers a specific
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scalar W , such as the maximum number of calls allowed, as long as this maximum number

of calls is not known to the individuals in advance. Last, non-parametric estimation is

very easy to implement, as it amounts to removing part of the sample.

Finally, when response rates are identical in the control and treatment groups, then

there is no selectivity bias under the latent variable response model, in the sense that

E(y(1) − y(0)|R = 1) is identified. The reason is that identical response rates imply

p(wmax, 0) = p(wmax, 1), which, under the response model assumed here, means that the

distribution of V of respondents in the two groups is identical. In that case, the sample

analog to E(y|N ≤ w1, Z = 1) − E(y|N ≤ wmax, Z = 0) in equation (6) is the simple

comparison of means among respondents.

5 Discreteness of the number of calls

Our main result, stated in proposition 2, holds when an adequate w1 can be found. In

the case of a number of calls, W and N are discrete: w = 1, 2, ..., wmax. As a consequence,

it is not always possible to identify the exact cut-off w1 and remove the corresponding

marginal respondents. However, we can bound the average treatment effect: proposition

3 below will show that we can define sharp bounds using quantiles of Y , as proposed by

Lee (2009).

Take the case p(wmax, 0) ≤ p(wmax, 1) and find w1 such that Pr(N ≤ w1|Z = 1) ≥

Pr(N ≤ wmax|Z = 0) (it could perfectly well be w1 = wmax, therefore such a w1 exists).

If we take w1 such that Pr(N ≤ w1|Z = 1) is closest to Pr(N ≤ wmax|Z = 0), then

Pr(N ≤ w1 − 1|Z = 1) < Pr(N ≤ wmax|Z = 0): i.e. w1 − 1 calls generate a response rate

in the treatment group that is below the response rate in the control group. Overall, we

have p(w1 − 1, 1) < p(wmax, 0) ≤ p(w1, 1).

We use the fact that the unknown parameter in the treatment group, E(y|V < p(wmax, 0), Z =

1) is a weighted difference of E(y|V < p(w1, 1), Z = 1) which is observed, andE(y|p(wmax, 0) ≤

V < p(w1, 1), Z = 1) which is unknown, with weights that depend on the observed propor-
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tions Pr(N ≤ w1|Z = 1) and Pr(N ≤ wmax|Z = 0).12 In this problem, E(y|p(wmax, 0) ≤

V < p(w1, 1), Z = 1) is unknown, but if it can be bounded; then E(y|V < p(wmax, 0), Z =

1) is also bounded and so is the average treatment effect.

When y is continuous, sharp bounds can be derived following Lee (2009) and using

quantiles of the distribution of Y . More precisely, call A the population such that

p(wmax, 0) ≤ V < p(w1, 1) in the treatment group. We can consider a larger set of

individuals (call it B) such that p(w1 − 1, 1) ≤ V < p(w1, 1), also in the treatment

group. Among the population B, the population A is present in the proportion α =

[p(w1, 1)−p(wmax, 0)]/[p(w1, 1)−p(w1−1, 1)]. Call yα the αth quantile of the distribution of

Y in population B. The mean of Y in population A cannot be lower than E(y|y ≤ yα, Z =

1, N = w1). Symmetrically, it cannot be larger than E(y|y ≥ y1−α, Z = 1, N = w1). As a

result, E(y|p(wmax, 0) ≤ V < p(w1, 1), Z = 1) is bounded by E(y|y ≤ yα, Z = 1, N = w1)

and E(y|y ≥ y1−α, Z = 1, N = w1), which can be computed from the data. This is

formally stated in the following proposition:

Proposition 3 : Partial identification using information on the number of

calls. Assume assumptions 1, 2 and 3 hold, y is continuous, and p(wmax, 0) ≤ p(wmax, 1).

There exists w1 such that:

Pr(N ≤ w1 − 1|Z = 1) < Pr(N ≤ wmax|Z = 0) ≤ Pr(N ≤ w1|Z = 1).

12In proposition 2, the latter term, E(y|p(wmax, 0) ≤ V < p(w1, 1), Z = 1), had a weight

of zero.
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Define:

y = E(y|y ≥ y1−α, Z = 1, N = w1)

y = E(y|y ≤ yα, Z = 1, N = w1)

with yq = G−1(q) where G is the c.d.f of Y conditional on N = w1 and Z = 1

and α =
Pr(N ≤ w1|Z = 1)− Pr(N ≤ wmax|Z = 0)

Pr(N ≤ w1|Z = 1)− Pr(N ≤ w1 − 1|Z = 1)
/

Then E(y(1) − y(0)|V < p(wmax, 0)) is set-identified with sharp lower and upper bounds

(∆,∆) such that:

∆ =
Pr(N ≤ w1|Z = 1)

Pr(N ≤ wmax|Z = 0)
[E(y|N ≤ w1, Z = 1)− y] + y − E(y|N ≤ wmax, Z = 0)

∆ =
Pr(N ≤ w1|Z = 1)

Pr(N ≤ wmax|Z = 0)
[E(y|N ≤ w1, Z = 1)− y] + y − E(y|N ≤ wmax, Z = 0)

If p(wmax, 0) > p(wmax, 1), we can find a w0 accordingly, such that Pr(N ≤ w0|Z = 0) >

Pr(N ≤ wmax|Z = 1) and define the bounds symmetrically.

This is proved formally in appendix A.1.3, and results useful for estimation and inference

are given in appendix A.2. Estimation includes several steps. First, identify the number

of calls w1 in the treated population (Z = 1) that makes the response rate in that popu-

lation closest (but higher) to the response rate among all controls (Z = 0). Compute all

respondent shares Pr(N ≤ w1|Z = 1), Pr(N ≤ w1 − 1|Z = 1), and Pr(N ≤ wmax|Z = 0).

Then isolate the treated population that answered the w1th call but didn’t answer the

(w1 − 1)th call and compute the relevant α-based quantiles of Y in this population to

form y and y. Finally, use the average outcomes in the proper populations of respondents

(N ≤ w1 if Z = 1 and N ≤ wmax if Z = 0) to compute the bounds on treatment effect.

Note that when y is discrete, the quantiles yα and y1−α are not well-defined, so that

Lee bounds are not immediately applicable. However, bounds for E(y|p(wmax, 0) ≤ V <
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p(w1, 1), Z = 1) can be easily derived when y is bounded. In particular, consider the case

where y is binary (y ∈ {0; 1}). Define γ = Pr(y = 1|Z = 1, N = w1). Then an upper

bound for E(y|p(wmax, 0) ≤ V < p(w1, 1), Z = 1) is y = min(1, γ
α

), and a lower bound is

y = max(0, α+γ−1
α

). The rest of proposition 3 holds. Estimation and inference results for

the discrete case are also given in appendix A.2.

Identification is illustrated in Figure 2.a. As compared with Figure 1, there is no longer

a number of calls in the treatment group for which the response rate is exactly the same as

in the control group. We therefore set the number of calls, w1=19, for which the response

rate is higher but as close as possible to that in the control group. We observe the outcome

for the corresponding group of individuals (N ≤ 19) in the treatment group, but we need

to know it for the population below the dotted line. If we knew the average outcome for

the population above the dotted line (with N = 19), we could infer the result. As we do

not know this average outcome, we must bound it. In order to do so, we can consider the

population with N = 19 (population B): α is the share of that population that is above

the dotted line (population A). As explained above, the α and (1 − α) quantiles of the

outcome in population B provide bounds to the average outcome in population A.

The width of the identified set is:

∆−∆ =

(
Pr(N ≤ w1|Z = 1)

Pr(N ≤ wmax|Z = 0)
− 1

)(
y − y

)
.

To minimize the width of the identification set, it is natural to choose w1 such that

Pr(N ≤ w1|Z = 1) is closest to Pr(N ≤ wmax|Z = 0).

An alternative approach to cope with the discreteness of the survey effort is to make

extra assumptions on functional forms of the model.13 With no loss of generality, there

are functions g0 and g1 such that:

E(y(z)|V < p(w, z)) = gZ(p(w, z)), ∀z,∀w = 1, 2, ..., wmax.

13This alternative approach was suggested by a referee.
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According to Proposition 2, values of p(w, z) are directly given for any observation

using that p(w, z) = Pr(N ≤ w,Z = z), and no instrument is required. However, as the

number of calls or visits is discrete, the response probability p(w, z) also takes discrete

values. Therefore, functions g cannot be estimated and the model is partially identified,

unless functions g have less parameters than there are values of p(w, z). Naturally, if one

is ready to make such functional form hypothesis, one can estimate a general version of

the usual selection model:

E(y|R = 1, N ≤ w, z) = z[g1(p(w, z))− g0(p(w, z))] + g0(p(w, z)).

Then, with g0 and g1 in hand, one can estimate the average treatment effect on the

common support of respondents.14 Recalling that p̄ = min(p(wmax, 0), p(wmax, 1)), we

obtain:

E(y(1)− y(0)|V ≤ p̄) = g1(p̄)− g0(p̄).

6 Comparison with other bounding approaches

It is useful to compare our approach with the alternative, increasingly influential ap-

proach to the sample selection problem: the construction of worst-case scenario bounds

of the treatment effect. This comparison will shed light on the trade-off between relaxing

identifying assumptions and improving what can be identified.

The assumption-free approach proposed by Horowitz and Manski (1995, 1998 and 2000)

requires both weaker hypotheses (response behavior does not need to be monotonic) and

14The familiar Das, Newey and Vella (2003) model applies when g0−g1 = β, a constant

impact. Under the parametric model, inclusion of control variables is straightforward.

In contrast, inclusion of control variables in our bound estimation is difficult because,

as those variables would generally be correlated with V , a different parameter would be

bounded for different values of the control variables.
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less information (the number of attempts made before reaching individuals does not need

to be observed).15 It does, however, require the outcome of interest to be bounded;

moreover, as illustrated by Lee (2009), it may generate very large bounds if response

rates are not very high.

The approach proposed by Lee (2009) is much closer to our approach. It provides

tight bounds on treatment effects under the assumption that selection into the sample is

monotonic (in a less restrictive sense than above), i.e., considering response R(Z) as a

function of assignment to treatment, R(1) ≥ R(0) for all individuals (or the reverse). The

bounds are given by proposition 1a in Lee (2009, p. 1083). The width of the identified

set can be substantially smaller than in Horowitz and Manski (2000), as it depends on

the difference in response rates between the control and treatment groups, rather than on

their sum.

Let us compare Lee (2009) with our framework. (i) Our approach requires observation

of the actual survey effort leading to the response.16 (ii) Both approaches impose mono-

tonicity conditions on potential response behavior, but in our approach, the monotonicity

condition is stronger as it bears jointly on the impact of assignment to treatment and on

the impact of survey effort. The counterpart is that in many cases, we should have closer

bounds, because we can further trim the sample making the difference in response rates

look smaller (see Figure 2).

Concerning identification results, the two approaches lead to point identification when

response rates are balanced. Actually, when response rates are balanced between treat-

15See in particular Horowitz and Manski (2000). Assume that y is bounded: −∞ <

ymin ≤ y ≤ ymax < ∞. In its simplest form, the approach is to consider two extreme

cases. In the best case, the outcome of all non-respondents from the control group is

ymin and the outcome of all treated non-respondents is ymax, and vice versa in the worst

case. If non-respondents are present in the proportion nr0 (resp. nr1) in the control (resp.

treatment) group, then the width of the identified interval is (nr0 + nr1)(ymax − ymin).
16Generally, Lee’s approach applies to any selection model, whereas this paper is only

relevant to selection created by survey non-response.
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ment and control groups, the monotonicity assumption entails that respondents in the

two groups represent the exact same population: there is no sample selection issue to

start with.

When response rates are not balanced, both approaches yield set identification (our

approach can provide point identification only in cases that are quite unlikely in practice).

Figure 2.a (commented above) and Figure 2.b illustrate the difference. In both cases,

individuals are ranked according to their unobserved propensity to respond, and treatment

does not affect the ranking, so that at a given level of V corresponding to a given response

rate, individuals in the control and treatment groups are comparable. In Lee’s approach,

the mean outcome for all treated respondents is observed, and in order to bound the

mean outcome for the population below the dotted line, bounds are derived for the share

above the line: bounds for the parameter of interest are small when this share is relatively

small. In our approach, knowledge of the number of attempts made to reach a person,

N , allows us to tighten the bounds if it allows us to observe groups within which the

marginal respondents are a smaller share. In Figure 2.a, individuals above the dotted line

with N = 19 are less numerous than all individuals above the dotted line. Therefore, this

approach should be more informative typically when there is a large number of attempts.

7 Conclusion

In this paper, we argue against the view that finding plausible instruments is the key

impediment to sample selection correction along the lines of the Heckman (1976, 1979)

model. Under the hypothesis of that model, and in the context of survey attrition, basic

information on the number of prior calls made to each individual before they responded is

enough to obtain narrow bounds of treatment effect, even in a non-parametric model with

heterogeneous treatment effects and a general specification of the latent threshold-crossing

selection equation. The somewhat counter-intuitive result is that, despite the fact that

reluctance to respond may well be correlated with potential outcomes, the actual effort
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made to get a response contains the same information as if survey effort was randomly

allocated between individuals.

The fact that most of the time we can only expect to identify bounds is not specific

to this approach. Any semi-parametric version of the familiar latent threshold-crossing

selectivity model with an actual instrument would behave similarly when the instrument

is not continuous: this applies in particular when survey effort is randomized in order to

correct the selectivity bias. Point estimation only obtains under parametric assumptions.

Furthermore, randomizing the survey effort does not maximize the number of respondents.

Therefore, it is always optimal to apply the maximal effort to every individual, record the

number of prior calls and use the correction method in this paper.

If the instrument is not the issue, this does not mean that there is no problem with

that class of sample selection correction models. The true cost lies in the restrictions that

the model implies on response behavior. Clearly, if bounding approaches yield sufficiently

narrow identified sets, they should be preferred because they involve less stringent re-

strictions. However, Horowitz and Manski’s (2000) bounds are quite wide when response

rates are below 80%, which is by no means the exception in the social sciences. And the

assumptions made by Lee (2009) are not so different from ours: extending the monotonic-

ity assumptions is not such a large cost compared with the substantial gains in terms of

identification in cases where response rates are unbalanced.
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A Appendix

A.1 Proofs of propositions in the text

A.1.1 Proof of proposition 1

Proof 1 Under assumption 1,

E(y|R = 1, Z = 0,W = w) = E(y(0)|R = 1, Z = 0,W = w)

= E(y(0)|1(V ≤ p(w, 0)) = 1, Z = 0,W = w)

=
E(y(0)1(V ≤ p(w, 0))|Z = 0,W = w)

Pr(1(V ≤ p(w, 0)) = 1|Z = 0,W = w)

=
E(y(0)1(V ≤ p(w, 0)))

Pr(1(V ≤ p(w, 0)) = 1)

= E(y(0)|V ≤ p(w, 0)).

Similarly,

E(y|R = 1, Z = 1,W = w) = E(y(1)|V ≤ p(w, 1)).

This holds for any couples (w0, 0) and (w1, 1). Consequently, if there exist w0 and w1

such that p(w0, 0) = p(w1, 1) = p̄, then we have:

E(y(1)− y(0)|V ≤ p̄) = E(y|R = 1,W = w1, Z = 1)− E(y|R = 1,W = w0, Z = 0),

which is equation 4 in the text.

A.1.2 Proof of proposition 2

Proof 2 For any given (w, z), let us denote (A): V < p(w, z) and (B): (N ≤ w,Z = z).

We start by proving that under assumptions 1 and 3, (A) ⇔ (B) (equation 8).

(A) ⇒ (B): V < p(w, z) implies that the person responds when a maximum of w
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attempts are made. The number of attempts until the person is reached is therefore less

or equal w.

not (A) ⇒ not (B): V ≥ p(w, z) implies that the person does not respond when a

maximum of w attempts are made. Given assumption 3, it also implies that the person

does not respond when a maximum of 1, or 2,..., or w − 1 attempts are made. This in

turn implies that N cannot be equal to 1,2,...,w. Therefore, N > w, noting N = ∞ for

individuals who never respond (whatever the number of attempts).

This equivalence result implies that:

p(w, z) ≡ Pr(R = 1|W = w,Z = z)

= Pr(V < p(w, z))

= Pr(N ≤ w|Z = z).

Take the case p(wmax, 0) < p(wmax, 1). If there exists w1 such that p(wmax, 0) = p(w1, 1),

then w1 is such that:

Pr(N ≤ w1|Z = 1) = Pr(N ≤ wmax|Z = 0).

Moreover, using the equivalence result and assumption 2:

E(y|Z = z,N ≤ w) = E(y(z)|Z = z,N ≤ w)

= E(y(z)|Z = z, V < p(w, z))

= E(y(z)|Z = z,1(V < p(w, z)) = 1)

=
E(y(z)1(V ≤ p(w, z))|Z = z)

Pr(1(V ≤ p(w, z)) = 1|Z = z)

=
E(y(z)1(V ≤ p(w, z)))

Pr(1(V ≤ p(w, z)) = 1)

= E(y(z)|V ≤ p(w, z)).
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This holds in particular for (w, z) = (wmax, 0) and (w1, 1). Therefore:

E(y(1)− y(0)|V < p(wmax, 0)) = E(y|N ≤ w1, Z = 1)− E(y|N ≤ wmax, Z = 0).

Because p is non-decreasing, w1 ≤ wmax and the sample with (N ≤ w1, Z = 1) is observ-

able.

A.1.3 Proof of proposition 3

Proof 3 Take the case p(wmax, 0) < p(wmax, 1). Because p is non-decreasing, ∃w1 ≤ wmax

such that p(wmax, 0) < p(w1, 1). (If inequality is not strict, we are back to Proposition 2).

In the case were w1 = 1, results hold with Pr(N ≤ w1 − 1|Z = 1) = 0.

Using V < p(w, z)⇔ (N ≤ w,Z = z) (proved in A.1.2) and independence assumptions,

we have:

E(y(1)|N ≤ w1, Z = 1)

= E(y(1)|V < p(w1, 1))

= E(y(1)|V < p(wmax, 0)) Pr(V < p(wmax, 0)|V < p(w1, 1))

+ E(y(1)|p(wmax, 0) ≤ V < p(w1, 1)) Pr(p(wmax, 0) ≤ V < p(w1, 1)|V < p(w1, 1))

where we have decomposed (V < p(w1, 1)) depending on whether V is lower or higher than

p(wmax, 0).

Also:

Pr(V < p(wmax, 0)|V < p(w1, 1)) =
Pr(N ≤ wmax|Z = 0)

Pr(N ≤ w1|Z = 1)
,

Pr(p(wmax, 0) ≤ V < p(w1, 1)|V < p(w1, 1)) =
Pr(N ≤ w1|Z = 1)− Pr(N ≤ wmax|Z = 0)

Pr(N ≤ w1|Z = 1)
.

By manipulating the previous equations we get:
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E(y(1)|V < p(wmax, 0))

=
Pr(N ≤ w1|Z = 1)

Pr(N ≤ wmax|Z = 0)
E(y(1)|N ≤ w1, Z = 1)

− Pr(N ≤ w1|Z = 1)− Pr(N ≤ wmax|Z = 0)

Pr(N ≤ wmax|Z = 0)
E(y(1)|p(wmax, 0) ≤ V < p(w1, 1))

In this expression, E(y(1)|p(wmax, 0) ≤ V < p(w1, 1)) is not observed. If we set it to

y or y (its bounds), we obtain the bounds given in the text for E(y(1)|V < p(wmax, 0))−

E(y(0)|V < p(wmax, 0)). Sharpness derives directly from the proof in Lee (2009).

A.2 Estimation and inference of the truncation model

In this appendix, we define the estimators of the bounds of the identified set. We prove

their consistency and derive their asymptotic properties. We focus on the lower bound

∆. The proof is similar for the upper bound. ∆ is defined in proposition 3 as:

∆ = Pr(N≤w1|Z=1)
Pr(N≤wmax|Z=0)

[E(y|N ≤ w1, Z = 1)− y] + y − E(y|N ≤ wmax, Z = 0)

Its estimator, ∆̂, is the sample analog of ∆. Let us review its different components.

The estimator of the conditional mean of Y for the respondents in the control group

and its properties are standard. Let us define ν̂ this estimator. It writes: ν̂ =
∑
Y R(1−Z)∑
R(1−Z)

.

It converges to the true value ν = E(Y |Z = 0, R = 1) = E(y|N ≤ wmax, Z = 0). Let

us call m the number of observations in the sample. We have:
√
m (ν̂ − ν) → N(0, V C)

where V C = V ar(Y |Z=0,N≤wmax)
E(1−Z)p̄

.

∆ comprises two proportions: p̄ = Pr(N ≤ wmax|Z = 0) and p̃ = Pr(N ≤ w1|Z = 1).

Their sample analogs are respectively: ̂̄p =
∑
R(1−Z)∑

1−Z and ̂̃p =
∑

1(N≤ŵ1)RZ∑
Z

. Note that̂̃p depends on ŵ1, which is also estimated: ŵ1 = minn :
∑
Z1(N≤n)∑

Z
≥ ̂̄p. Because of N

discreteness, the estimator of w1 converges faster than
√
m. As a consequence, it can be
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omitted in the computation of the asymptotic variance of p̃. Finally, we have the usual

results:
√
m
(̂̄p− p̄) → N (0, V p̄) and

√
m
(̂̃p− p̃) → N

(
0, V p̃

)
where V p̄ = p̄(1−p̄)

E(1−Z)
and

V p̃ = p̃(1−p̃)
E(Z)

Let us define µ̂ the estimator of µ = E(y|N ≤ w1, Z = 1). It writes: µ̂ =
∑
Y Z1(N≤ŵ1)∑
Z1(N≤ŵ1)

.

As above, we can abstract from the uncertainty associated to the estimation of w1 ( ŵ1

converges faster than
√
m). We have the usual result:

√
m (µ̂− µ) → N(0, V Y ) with

V Y = V ar(Y |Z=1,N≤w1)
p̄E(Z)

The last term that needs to be estimated is y = E(y|y ≥ y1−α, Z = 1, N = w1). Let us

define ŷ as its estimator. When Y is continuous, it can be characterized as in Lee (2009).



ŷ =
∑
Y 1(Y≥ŷ1−α̂)Z1(N=ŵ1)∑
1(Y≥ŷ1−α̂)Z1(N=ŵ1)

ŷ1−α̂ = min y :
∑

1(Y≥ŷ1−α̂)Z1(N=ŵ1)∑
Z1(N=ŵ1)

≥ 1− α̂

α̂ =
̂̃p−̂̄p̂̃p−̂̃q̂̃q =

∑
Z1(N≤ŵ1−1)∑

Z



The proof of its consistency and the derivation of its asymptotic properties also follow

Lee (2009), which uses theorems 2.6 and 7.2 of Newey and MacFadden (1986). Applying

directly Lee’s results, we have:
√
m
(
ŷ − y

)
→ N(0, V ȳ) where

V ȳ =
V ar(Y |Z = 1, N = w1, Y ≥ y1−α)

E(Z1(N = w1))α
+

(y1−α − y)2(1− α)

E(Z1(N = w1))α
+

(
y1−α − y

α

)2

V α

V α =
1

(p̃− q̃)2

(
V p̃ + V p̄

)
+

(
p̃− p̄

(p̃− q̃)2

)2 (
V p̃ + V q̃

)

To sum up, the estimator of ∆̂ writes: ∆̂ =
̂̃p̂̄p [µ̂ − ŷ] + ŷ − ν̂. We can then apply the

delta method. Thus the asymptotic variance of ∆̂ is:

(
p̃

p̄

)2

(V Y + V ȳ) +

(
p̃(µ− ȳ)

p̄2

)2
p̄(1− p̄)
E(1− Z)

+

(
µ− ȳ
p̄

)2
p̃(1− p̃)
E(Z)

+ V ȳ + V C

Following Imbens and Manski (2004), a 95% confidence interval for E(y(1)− y(0)|V <

31



p(wmax, 0)) given those bounds is: [∆̂−Cm.σ̂∆/
√
m, ∆̂ +Cm.σ̂∆/

√
m] where Cm satisfies:

Φ(Cm +
√
m ∆̂−∆̂

max(σ̂∆,σ̂∆)
)− Φ(−Cm) = 0.95

When Y is binary, we can apply the previous formula. The only term that needs to

be updated is the estimator of ȳ. It writes: ŷ = min(1, γ̂
α̂

) where α̂ is defined above and

γ̂ =
∑
Y Z1(N=ŵ1)∑
Z1(N=ŵ1)

. Let us assume that the econometrician knows how the minimum is

attained. When y = 1, the asymptotic variance V ȳ can be dropped. When y = γ
α

, we

have: V ȳ = V ar(Y |Z=1,N=w1)
E(Z1(N=w1))α2 +

(
γ
α2

)2
V α.
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