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Abstract We design a double-or-quits game to compare the speed of learning one’s
specific ability with the speed of rising confidence as the task gets increasingly diffi-
cult. We find that people on average learn to be overconfident faster than they learn
their true ability and we present an intuitive-Bayesian model of confidence which inte-
grates confidence biases and learning. Uncertainty about one’s true ability to perform
a task in isolation can be responsible for large and stable confidence biases, namely
limited discrimination, the hard—easy effect, the Dunning—Kruger effect, conservative
learning from experience and the overprecision phenomenon (without underprecision)
if subjects act as Bayesian learners who rely only on sequentially perceived perfor-
mance cues and contrarian illusory signals induced by doubt. Moreover, these biases
are likely to persist since the Bayesian aggregation of past information consolidates
the accumulation of errors and the perception of contrarian illusory signals generates
conservatism and under-reaction to events. Taken together, these two features may
explain why intuitive Bayesians make systematically wrong predictions of their own
performance.
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1 Introduction

In many circumstances, people appear to be “overconfident” in their own abilities and
good fortune. This may occur when they compare themselves with others, massively
finding themselves “better-than-average” in familiar domains (e.g., Svenson 1981;
Kruger 1999), when they overestimate their own absolute ability to perform a task
(e.g., Lichtenstein and Fischhoff 1977; Lichtenstein et al. 1982), or when they overes-
timate the precision of their estimates and forecasts (e.g., Oskamp 1965). Moore and
Healy (2008) designate these three forms of overconfidence respectively as overplace-
ment, overestimation, and overprecision. We shall here be concerned with how people
overestimate, or sometimes underestimate, their own absolute ability to perform a task
in isolation. Remarkably, however, our explanation of the estimation bias predicts the
overprecision phenomenon as well.

The estimation bias refers to the discrepancy between ex post objective performance
(measured by frequency of success in a task) with ex ante subjectively held confidence
(Lichtenstein et al. 1982). It has first been interpreted as a cognitive bias caused by
the difficulty of the task (e.g., Griffin and Tversky 1992). It is the so called “hard—
easy effect” (Lichtenstein and Fischhoff 1977): people underestimate their ability to
perform an easy task and overestimate their ability to perform a difficult task. However,
arecent literature has challenged this interpretation by seeking to explain the apparent
over/underconfidence by the rational-Bayesian calculus of individuals discovering
their own ability through experience and learning (Moore and Healy 2008; Grieco
and Hogarth 2009; Benoit and Dubra 2011; Van den Steen 2011). While the cognitive
bias view describes self-confidence as a stable trait, the Bayesian learning perspective
points at the experiences leading to over- or under-confidence. The primary goal of this
paper is to propose a parsimonious integration of the cognitive bias and the learning
approach.

We design a real-effort experiment which enables us to test the respective strengths
of estimation biases and learning. People enter a game in which the task becomes
increasingly difficult—i.e. risky—over time. By comparing, for three levels of diffi-
culty, the subjective probability of success (confidence) with the objective frequency
at three moments before and during the task, we examine the speed of learning one’s
ability for this task and the persistence of overconfidence with experience. We con-
jecture that subjects will be first underconfident when the task is easy and become
overconfident when the task is getting difficult. However, “difficulty” is a relative
notion and a task that a low-ability individual finds difficult may look easy to a high-
ability person. Thus, we should observe that overconfidence declines with ability and
rises with difficulty. The question raised here is the following: if people have initially
an imperfect knowledge of their ability and miscalibrate their estimates, will their
rising overconfidence as the task becomes increasingly difficult be offset by learning,
and will they learn their true ability fast enough to stop the game before it is too late?
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The popular game “double or quits” fits the previous description and will thus
inspire the following experiment. A modern version of this game is the world-famous
TV show “who wants to be a millionaire”. In the games of “double or quits” and “who
wants to be a millionaire”, players are first given a number of easy questions to answer
so that most of them win a small prize. At this point, they have an option to quit with
their prize or double by pursuing the game and answering a few more questions of
increasing difficulty. The same sort of double or quits decision may be repeated several
times to allow enormous gains in case of repeated success. However, if the player fails
to answer one question, she must step out of the game with a consolation prize of
lower value than the prize that she had previously declined.

Our experimental data reproduces the double or quits game. We observe that
subjects are under-confident in front of a novel but easy task, whereas they feel over-
confident and willing to engage in tasks of increasing difficulty to the point of failing.

We propose a new model of “intuitive Bayesian learning” to interpret the data
and draw new testable implications. Our model builds on ideas put forward by Erev
etal. (1994) and Moore and Healy (2008). It is Bayesian like Moore and Healy (2008),
while viewing confidence as a subjective probability of success, like Erev et al. (1994).
However, it introduces intuitive rationality to overcome a limitation of the rational-
Bayesian framework which is to describe how rational people learn from experience
without being able to predict the formation of confidence biases before completion of
a task. This is not an innocuous limitation because it means, among other things, that
the rational-Bayesian theory is inconsistent with the systematic probability distortions
observed in decisions under risk or uncertainty since the advent of prospect theory
(Kahneman and Tversky 1979). Therefore, we need to go deeper into the cognitive
process of decision. Subjects in our view derive their beliefs exclusively from their
prior and the informative signals that they receive. However, “intuitive Bayesians”
decide on the basis of the sensory evidence that they perceive sequentially. If they
feel uncertain of their prior belief, they will perceive the objection to it triggered by
their doubt and wish to “test” its strength before making their decision, like those
decision makers weighting the pros and cons of an option. The perceived objection
to a rational prior acts like a contrarian illusory signal that causes probability dis-
tortions in opposition to the prior and this is a cognitive mechanism that does not
require completion of the task. As they gain experience, they keep on applying Bayes
rule to update their prior belief both by cues on their current performance and by
the prior-dependent contrarian signal. Thus, with the single assumption of intuitive
rationality, we can account for all the cognitive biases described on our data within the
Bayesian paradigm and integrate the cognitive bias and the learning approach. With
this model, and in contrast with Gervais and Odean (2001), we don’t need to assume
a self-attribution bias (Langer and Roth 1975; Miller and Ross 1975) combined with
Bayesian learning to produce overconfidence.! Signals of future success and failure

1 Using German survey data about stock market forecasters, Deaves et al. (2010) does not confirm that
success has a greater impact than failure on self-confidence, which casts doubt on the self-attribution bias
explanation.
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are treated symmetrically.” Finally, unlike models of confidence management (e.g.
Brunnermeier and Parker 2005; Koszegi 2006; Mobius et al. 2014), we don’t have
to postulate that individuals manipulate their beliefs and derive direct utility from
optimistic beliefs about themselves.

Section 2 lays down the structure of the experiment and incentives, and provides
the basic descriptive statistics. Our large data set allows a thorough description of
confidence biases and a dynamic view of their evolution with experience of the task.
Section 3 describes the confidence biases and learning shown by our data. Four basic
facts about confidence are reported from our data: (i) limited discrimination among
different tasks; (ii) miscalibration of subjective probabilities of success elicited by the
“hard—easy effect”; (iii) differential, ability-dependent, calibration biases known as
the Dunning—Kruger (or ability) effect (Kruger and Dunning 1999); and (iv) local,
but not global, learning. Section 4 proposes a new theory of over (under)-confidence
among intuitive Bayesians which integrates doubt and learning and can predict biases,
before as well as during the task, in repeated as well as in single trials. Doubt-driven
miscalibration appears to be a sufficient explanation, not only for the hard—easy effect
and the ‘ability’ or Dunning—Kruger effect, but also for limited discrimination and
for the overprecision phenomenon. The theory is further used in Sect. 5 to predict
the evolution of confidence over experience on our data set. For instance, low-ability
subjects first lose confidence when they discover their low performance during the
first and easiest level; but they eventually regain their initial confidence in own ability
to perform more difficult tasks in the future after laborious but successful completion
of the first level. Intuitive Bayesians exhibit conservatism, that is, under-reaction to
received information, and slow learning. Finally, we show in Sect. 5.3 that the cues
upon which subjects construct their own estimate of success, i.e. confidence, widely
differ from the genuine predictors of success, which further explains the planning
fallacy.® The conclusion follows in Sect. 6.

2 The experiment
2.1 Task and treatments

Participants perform a real-effort, rather long and difficult, task for which they get paid
according to their degree of success. The task consists in solving anagrams ranked in
three levels of increasing difficulty. It is performed during a maximum of 15 rounds
lasting no more than 8 min each. These 15 rounds are structured in three successive
levels of increasing difficulty, designated, respectively, as the training level, the middle
level, and the high level.

2 In studies where subjects are free to stay or to leave after a negative feedback, subjects who update most of
their confidence in their future success to a negative feedback are selectively sorted out of the sample. This
creates an asymmetry in measured responses to positive and negative feedback. Such spurious asymmetry
does not exist in the present experiment, because subjects who fail to reach one level must drop out of the
game.

3 The planning fallacy is the tendency to underestimate the time needed for completion of a task. See, e.g.
Buehler et al. (2002).
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Participants are successful at one level when they manage to decode 2/3 of the
anagrams at this level. An example of the task screen is reproduced in appendix. The
training level consists of 9 rounds of low difficulty (i.e. 6 anagrams per round to be
solved in no more than 8 min). It is long enough to let participants feel that a large
effort and ability is required of them to succeed at the optional upper levels. It does
also let them ample time to learn the task. The middle and high levels, which come
next, comprise three rounds each.

The gradient of task difficulty was manipulated after completion of the training
level and two conditions are available: (i) in the ‘wall’ condition, the difficulty jumps
sharply at middle level, but remains constant at high level; (ii) in the ‘hill” condition,
the difficulty always rises from one level to the next, slowly first at middle level, then
sharply at high level.

By the end of the experiment, the required number of anagrams is the same for the
‘wall” and ‘hill’ conditions. However, the distribution of anagrams to be decoded differs
for these two conditions. In the wall condition, ten anagrams per round are proposed
at the middle and high levels, of which 20 anagrams at least must be decoded per level.
In the hill condition, eight anagrams per round are proposed at middle level, and this
rises to twelve anagrams at high level. Decoding sixteen anagrams in three rounds
is required for middle level; and decoding twenty-four anagrams in three rounds is
required for high level. This design can be visualized in Fig. 1. The same figure appears
(without the legends) on the screen before each round.*

The manipulation of the ‘wall’ and ‘hill’ conditions gave rise to three treatments:

— Wall treatment (wall): the wall condition is imposed to participants who passed
the training level;

— Hill treatment (Aill): the hill condition is imposed to participants who passed the
training level,

— Choice treatment (choice): a choice among the two conditions (wall or hill) is
proposed to participants who passed the training level.

The double or quits game is played under these three treatments. All subjects first
go through the training level. Those who were successful—i.e., those who solved at
least 36 anagrams during the training level—will then be asked to double or quits:

— Double Continue to the next level to win a substantial increase in earnings;
— Quits Stop the experiment and take your earnings.

Participants who decide to go to middle level get a consolation prize that is lower
than the foregone earnings if they fail or drop out before the third round. If they succeed
middle level, they will be asked again to double or quits. The same rules apply for
high level at rising levels of earnings. The potential gains (in Euros) were (10, 2) at
the training level, that is, 10€ for successful quitters and 2€ for failures, (14, 4) at
middle level, and (26, 11) at high level.

4 The screen highlights the round, the number of correct anagrams cumulated during the current level and
the number of anagrams needed to pass this level.
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Confidence biases and learning among intuitive Bayesians

2.2 Experimental sessions

We ran 24 sessions for a total of 410 participants, half for the choice treatment and the
other half equally split between the ‘wall” and ‘hill’ treatments. Eight sessions were
run in the BULCIRANO lab (Center for Interuniversity Research and Analysis on
Organizations), Montreal (Canada), and the same number of sessions were conducted
at the LEEP (Laboratoire d’Economie Expérimentale de Paris), Pantheon-Sorbonne
University. The difference between Paris and Montreal was observed to be insignifi-
cant. Thus, eight additional sessions were conducted at LEEP to acquire robust results.
A show-up fee of 5€ in Paris and Can$ 5 in Montreal was paid to the participants (from
now on, all money amounts will be given in Euros). About 80% of the participants
were students.

At the start, instructions were read out and a hard copy of it was also provided
individually. Participants answered six questions to test their full comprehension of
the experiment. Information on gender, age, educational level and labor market status
was required. The last question was a hypothetical choice between 5€ for sure and
an ambiguous urn containing 100 balls of two colors (white and black) in unknown
proportions. Ten Euros (10€) were to be earned if a black ball was drawn. Choice of
the sure gain provided a rough but simple measure of risk aversion in the uncertainty
context of the experiment.

2.3 Descriptive statistics

The main descriptive statistics for the three treatments are reported in Table 1.

Table 1 Descriptive statistics for the three treatments

Variables Treatments
Wall Hill Choice

Male 56% 48% 49%
Age 245 25.8 25.1
Risk averse 54% 59% 51%
Payments 9.1 8.9 7.8
Total anagrams solved 55.6 53.7 54.3
Ability® 2.8 2.7 2.6
Number of observations 101 106 203
Decision to double conditional on success at previous level

Middle level 78% (91) 76% (90) 77% (176)

High level 95% (22) 72% (29) 82% (34)

Decision to double to high level: difference between the “Wall” and “Hill” treatments is significant at 5%;
all other differences are not significant at 10% level (¢ test). Number of participants successfully clearing
the previous level is in parentheses

4 Ability is measured by the number of anagrams solved per minute in the first four rounds. It lies in the
interval [0,6]
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Table 2 Descriptive statistics by ability level

Variables Level of ability Difference
High Medium Low M-H L-M L-H

Male 47% 54% 50% ns ns ns
Age 23.6 24.5 27.2 ns ok Ak
Risk aversion 53% 50% 59% ns ns ns
Payments 11.7 7.7 6.0 HAE o HAE
Number anagrams solved 67.7 53.8 42.6 HAE ok HAE
Ability 4.5 2.4 1.1 ok ok ok
Number of observations 131 142 137
Decision to double conditional on success at previous level

Middle level 91% (128) 81% (127) 54% (102) o ok HEE

High level 87% (55) 72% (25) 80% (5) * ns ns

Number of participants successfully clearing the previous level is in parentheses
ns not significant at 10% level (¢ test)
Significance level: * 10%; ** 5%; *** 1%

The results of tests show that the three samples are homogeneous. No significant
difference is observed among the samples’ means for individual characteristics. As
expected, the ‘wall’ and ‘hill’ treatments had a substantial impact on the decision
to double upon reaching the middle level. Almost everybody doubles in the ‘wall’
treatment on reaching middle level because the high level is no more difficult than the
middle level. In contrast, only 72% enter the high level in the ‘hill’ treatment as the
difficulty gradient is very steep (¢ test: t+ = 2.20; p value = 0.033). In spite of these
differences, the number of anagrams solved and payments may be considered equal
among treatments at the usual level of significance.

Subjects can also be grouped in three different levels of ability, according to the
number of anagrams solved per minute in the first four rounds: high ability (first tercile),
medium ability (second tercile) and low ability (last tercile). Some descriptive statistics
for the three treatments are reported on Table 2. The three groups are homogeneous
in terms of gender and risk aversion but a slightly greater proportion of low-ability
subjects can be found among older, probably non-student, participants.

Table 2 shows that “ability” strongly discriminates among participants in terms
of performance (total anagrams solved, payments) and quits before the middle level.
However, the training level was meant to be easy enough that three-quarters (102:137)
of low-ability subjects would pass it.

2.4 Confidence judgments

Participants were asked to state their subjective probability of success for the three
levels and at three moments: before, during, and after the training level. Before begin-
ning the game, they were shown a demonstration slide which lasted 1 min. Anagrams
of the kind they would have to solve appeared on the screen with their solution. Then,
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they were asked to assess their chances of success on a scale of 0-100 (Adams 1957),
and the game started for real. After four rounds of decoding anagrams, players were
asked again to rate their confidence. Finally, players who had passed the training level
and decided to double re-estimated their chances of success for the middle and high
levels.

The Adams’s (1957) scale that we used is convenient for quantitative analysis
because it converts confidence into (almost) continuous subjective probabilities. It
was required for consistency that the reported chances of success do not increase as
the difficulty level increased. Answers could not be validated as long as they remained
inconsistent. Subjects actually used the whole scale but, before the experiment, 14%
expressed absolute certainty that they would succeed the first level and only one
participant was sure that she would fail.

We did not directly incentivize beliefs because our primary aim was not to force
subjects to make optimal forecasts of their chances of success but to have them report
sincerely their true beliefs in their attempt to maximize their subjective expected utility,
and to observe the variation of such beliefs with experience. The true beliefs are those
which dictate actual behavior following such prediction, and the latter was incentivized
by the money gains based on subjects’ decisions to double or quits and performance
in the task. Armantier and Treich (2013) have recently generalized previous work on
proper scoring rules (see their extensive bibliography). They show that, when subjects
have a financial stake in the events they are predicting and can hedge their predictions
by taking additional action after reporting their beliefs, use of any proper scoring rule
generates complex distortions in the predictions and further behavior since these are
not independent and are in general different from what they would have been if each
had been decided separately. In the present context, final performance yields income
and does not immediately follow the forecast. Hence, incentivizing forecasts might
force subjects to try and adjust gradually their behavior to their forecast and, therefore,
unduly condition their behavior. A further difficulty encountered in this experiment
was that, by incentivizing beliefs on three successive occasions, we induced risk-averse
subjects to diversify their reported estimates as a hedge against the risk of prediction
error. Self-report methods have been widely used and validated by psychologists and
neuroscientists; and recent careful comparisons of this method with the quadratic
scoring rule’ found that it performed as well (Clark and Friesen 2009) or better (Hollard
et al. 2015) than the quadratic scoring rule.® Considering that self-reports perform
nicely while being much simpler and faster than incentive-compatible rules, use of the
self-report seemed appropriate in this experiment.

5 Afterthe subject has reported a probability p, the quadratic scoring rule imposes a cost that is proportional
to(1— p)2 in case of success and to (0 — p)2 in case of failure. The score takes the general form: S = a —b.
Cost, witha, b > 0.

6 The second study also included the lottery rule in the comparison and found that the latter slightly
outperformed self-report. The lottery rule rests on the following mechanism: after the subject has reported
a probability p, a random number ¢ is drawn. If ¢ is smaller than p, the subject is paid according to the
task. If g is greater than p, the subject is paid according to a risky bet that provides the same reward with
probability g. The lottery rule cannot be implemented on our design.
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Table 3 A comparison of
confidence for the wall and hill -
treatments shown separately Wall (%) Hill (%)

Subjective confidence No-choice treatment Difference

Before round 1

Level 1 80 77 ns
Level 2 62 58 ns
Level 3 47 40 ok
Before round 5
Level 1 71 71 ns
Observations: Before rounds 1 Level 2 53 52 ns
and 5 (before round 10): 101 (71) Level 3 40 36 ns

for wall and 106 (68) for hill.
ns not significant at 10% level
Significance level: * p < 0.10, Level 2 60 56 ns

% p < 0.05, %% p < 0.01 Level 3 43 39 ns

Before round 10

3 Describing confidence biases and learning
3.1 Limited discrimination

About half of our subjects were selected randomly into the ‘wall” and ‘hill’ treatments
and could not choose between the two. Those selected in one path were informed of
the characteristics of their own path but had no knowledge whatsoever of the charac-
teristics, nor even the existence, of the other path.

Result 1 (Limited discrimination): Subjects do not perceive differences of difficulty
between two different tasks in the future unless such differences are particularly salient.
Moreover, they are not forward-looking, in the sense that they are unable to anticipate
the increased likelihood of their success at the high level conditional on passing the
middle level. However, they can be sophisticated when it is time for them to choose.

Support for result 1 Table 3 compares confidence judgments regarding the three
levels of difficulty among the ‘wall’ and the ‘hill’ subjects before, during, and after
the training period. Although the ‘wall” and ‘hill” were designed to be quite different
at the middle and high levels, the subjective estimates of success exhibit almost no
significant difference at any level. The single exception concerns the early estimate
(before round 1) regarding the high level for which the difference of gradient between
the two paths is particularly salient. However, the difference ceases to be significant
as subjects acquire experience of the task. This striking observation suggests that
individuals are unable to discriminate distinctive characteristics of the task unless the
latter are particularly salient.

Perhaps even more disturbing is the fact that, in Table 3, subjects discount their
confidence level from the middle to the high level as much in the Wall as in the Hill
treatment. For instance, just before the middle level, the ratio of confidence in passing
the high level to confidence in passing the middle level was close to 0.70 in both
treatments. However, a perfectly rational agent should realize that the high level is no
more difficult than the middle level in the Wall treatment whereas it is much more
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difficult in the Hill treatment. Thus, she should report almost the same confidence at
both levels in the Wall treatment, and a considerably lower confidence at the high level
in the Hill treatment. The latter observation suggests that most individuals are unable
to compute conditional probabilities accurately even when the latter is equal to one
as in the Wall treatment. They do not anticipate that, if they demonstrate the ability to
solve 20 anagrams or more at middle level, they should be almost sure to solve 20 or
more at the high level. However, subjects do make the right inference when it is time
for them to make the decision since 95% of subjects who passed the middle level in the
Wall treatment decided to continue (Table 1). And, if they have a choice between Wall
and Hill, they do make a difference between these two tracks: 71.4% of doublers then
prefer the Wall track although they would have greater chances of success at the middle
level if they chose Hill. This observation suggests that subjects did not maximize their
immediate probability of success but made a sophisticated comparison of the expected
utility of both tracks, taking the option value of Wall in consideration before making
an irreversible choice of track spanning over two periods.’

3.2 Miscalibration

Result 2 (The hard—easy effect): In comparison with actual performance, confidence in
one’s ability to reach a given level is underestimated for a novel but relatively easy task
(the training level); and it is overestimated for the subsequent more difficult tasks (the
middle and high levels). Overconfidence increases in relative terms with the difficulty
of the task. Conditional on an initial success (training level) and on the decision to
continue, confidence in one’s ability to reach higher levels is still overestimated. Thus,
initially successful subjects remain too optimistic about their future.

Support for result 2 Figure 2 compares the measured frequency of success with the
reported subjective confidence in the three successive levels of increasing difficulty.
For the middle and high levels, we also indicate these two probabilities as they appear
before the training period and after it conditional on doubling. The Choice and No-
choice conditions have been aggregated on this figure because no significant difference
was found in the result of tests.

The task required at the training level was relatively easy for our subjects since 87%
passed this level. However, subjects started it without knowing what it would be like
and, even after four rounds of training, they underestimated their own ability to a low
77% probability of success. The difference among the two percentages is significant
(t =5.77, p = 0.000; ¢ test). Hence, individuals are under-confident on the novel but
relatively easy task.

In contrast, subjects appear to be overconfident as the task gets increasingly difficult.
They consistently diminish their estimated probabilities of success but do not adjust
their estimates in proportion to the difficulty of the task. Thus, individuals tend to
overestimate their own chances for the advanced levels. The difference between the
frequency of success and confidence before the task is always significant, both at the
middle level (+ = 18.3, p = 0.000) and at the high level (t = 17.1, p = 0.000).

7 We are grateful to Luis Santos-Pinto for making the last point clear in early discussions.
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100%
90% 87%
80% e
6
70%
6
50% 43% 43%
40% 31%
30% 21% 10%
20% 13%
10%
0%
before before after before after
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Fig. 2 Hard-easy effect observed at three levels. Notes: Observations: before training level (N 410); after
training level (N 275—analysis restricted to doublers). Differences between frequency of success and
confidence (before and after) are significant at 1% at all levels (training, middle and high) (7 test)

The same conclusions hold conditional on passing the training level and choosing
to double. Subjects remain overconfident in their future chances of success. However,
their confidence does not rise after their initial success in proportion to their chances
of further success.

3.3 The ability effect

Result 3 (The ability effect): Overcalibration diminishes with task-specific ability.

Support for result 3 The hard—easy effect is reproduced on Fig. 3a—c for the three
ability terciles.® Low-ability subjects are obviously more overconfident at middle and
high levels relative to high and medium-ability individuals. This result confirms earlier
observations of Kruger and Dunning (1999) among others (see Ryvkin et al. 2012
for a recent overview and incentivized experiments). The so-called Dunning—Kruger
effect has been attributed to a metacognitive inability of the unskilled to recognize
their mistakes.” We give here another, and in our opinion, simpler explanation.'? The
ability (or Dunning—Kruger) effect may be seen as a corollary of the hard—easy effect
because “difficulty” is a relative notion and a task that a low-ability individual finds
difficult certainly looks easier to a high-ability person. Thus, if overconfidence rises
with the difficulty of a task, it is natural to observe that it declines on a given task with
the ability of performers.

8 Difference between confidence and frequency of success is significant at 1% for all ability levels. For
these figures, we selected confidence reported after 4th round (during training level) to minimize the impact
of mismeasurement.

9 The Dunning—Kruger effect initially addressed general knowledge questions whereas we consider self-
assessments of own performance in a real-effort task.

10 Our explanation may also be better than the initial explanation such that the unskilled are unaware
of their lower abilities. Miller and Geraci (2011) found that students with poor abilities showed greater
overconfidence than high-performing students, but they also reported lower confidence in these predictions.
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Fig. 3 a Under-confidence at the training level, by ability. b Overconfidence at middle level, by ability. ¢
Overconfidence at high level, by ability

3.4 Learning

Result 4 (Learning is local, not global): Confidence and performance co-vary during
the task. Subjects learned locally upon experiencing variations in their performance.
However, they did not learn globally in our experiment, since doublers remained as
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Fig. 4 Variation of confidence with experience, by level of ability: middle level. Notes. Sample size: 410
individuals for Before and During, and 275 for After (only doublers). We report the adjusted ability for
doublers, see Footnote 12 for more details. Differences between ability levels are significant at 1% level
before and during. Differences after are not significant at 10% level. Differences by ability level high-
ability: During—Before: ***; After—During: ns; After—Before: ns. Medium-ability: During—Before: ***;
After—During: ***; After—Before: **. Low-ability: During—Before: ***; After—During: ***; After—Before:
ns. Significance level: *#%1%; **5%; *10%; ns not significant at 10% level (¢ test)

confident as before after completing the training level irrespective of their true ability
level.

Support for result 4 Figures 4 and 5 describe confidence by ability group before,
during, and after the training period'!-1? for the middle and high level, respectively,
whereas Fig. 6 describes the variation of performance of the same groups within the
same period. These graphs, taken together, show a decline in both (ability-adjusted)
confidence and performance during the first four rounds, followed by a concomitant
rise of confidence and performance in the following rounds.!? The observed decline
of confidence at the beginning of the training period can be related on Fig. 6 to the
fact that participants solved less and less anagrams per period during the first four
periods: 5.51 on average in period 1, 5.18 in period 2, 4.60 in period 3, and 4.17 in
period 4.'* Subjects kept solving at least two-thirds of the anagrams available during
the training session but probably lost part of their motivation on repeating the task. On
sequentially observing their declining performance, they revised their initial estimate
of future success downward. However, on being asked to report their confidence after

' No significant difference was found between the Choice and No-choice conditions, suggesting that the
option to choose the preferred path does not trigger an illusion of control.

12 Participants who reported confidence after the training period were more able than average since they
had passed this level and decided to double. Thus, we compare ability-adjusted confidence Before and
During with the reported confidence After. The ability-adjusted confidence Before and During are obtained
by running a simple linear regression of confidence Before and During on ability, measured by the average
number of anagrams solved per minute in the first four rounds of the training level. The estimated effect of
superior ability of doublers was added to confidence During or Before to get the ability-adjusted confidence
which directly compares with the observed confidence After.

13 With a single exception, confidence variations are statistically significant at 1% level in the middle and
high levels.

14 There was no significant difference between treatments.
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Fig.5 Variation of confidence with experience, by level of ability: high level. Notes. Sample size: 410 indi-
viduals for Before and During, and 275 for after (only doublers). We report the adjusted ability for doublers,
see Footnote 12 for more details. Differences between ability levels are significant at 1% level before and
during. Differences after are not significant at 10% level. Differences by ability level: High-ability: During—
Before: ns; After—During: ns; After—Before: ns. Medium-ability: During—Before: ***; After—During: **;
After-Before: ns. Low-ability: During-Before: ***; After—During: ***; After—Before: ns. Significance
level: *#%1%; **5%; *10%; ns not significant at 10% level (¢ test)

5,5 S o

45
g y NS . — — Highability

Medium ability
. ....... Low ability

2,5

round

Fig. 6 Number of anagrams solved per round by level of ability

four rounds, they became conscious of their performance decline and responded to
this information feedback. Performance rose sharply but momentarily during the next
two rounds. The average performance first rose to 4.37 in period 5 and 5.05 in period 6
then sharply declined to 4.39 in period 7, 4.06 in period 8 and 3.48 in period 9. As soon
as subjects became (almost) sure of passing the training level, they diminished their
effort. During the experiment it was also observed that individuals stopped decoding
further anagrams as soon as the minimum requirement to clear a level was fulfilled.
Subjects experiencing low (medium) performance in the first rounds seem to learn
locally that they have a low (medium) ability since the confidence gap widens during
the first four periods. However, this learning effect is short-lived since the confidence
gap shrinks back to its initial size after low (medium)-ability subjects strove to succeed,
increasing their performance (as reported on Fig. 6) and regaining confidence. Even-
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tually, experienced “doublers” are as confident to succeed at higher levels as they were
before the task, irrespective of their ability level: there is no global learning effect. We
share the conclusion of Merkle and Weber (2011) that the persistence of prior beliefs
is inconsistent with fully rational-Bayesian behavior (see also Benoit et al. 2015).

4 Theory

We present now a simple Bayesian model that describes absolute confidence reported
before and during completion of a task, and predicts limited discrimination, the hard—
easy effect and the ability effect. It builds on ideas put forward by Erev et al. (1994)
and Moore and Healy (2008) who both consider that confidence, like most judgments,
are subject to errors. Erev et al. (1994) view confidence as a subjective probability
that must lie between 0 and 1. Hence, probabilities close to 1 are most likely to be
underestimated and probabilities close to 0 are most likely to be overestimated. The
hard—easy effect and the ability effect may be merely the consequence of that simple
truth. However, their theory offers a qualitative assessment that lacks precision and
cannot be applied to intermediate values of confidence. Moore and Healy (2008) ana-
lyze confidence as a score in a quiz that the player must guess after completion of
the task and before knowing her true performance. Bayesian players adjust their prior
estimate after receiving a subjective signal from their own experience. It is natural to
think that signals are randomly distributed around their true unknown value. Assuming
normal distributions for the signal and the prior, the posterior expectation of confi-
dence is then a weighted average of the prior and the signal lying necessarily between
these two values. Thus, if the task was easier than expected, the signal tends to be
higher than the prior. The attraction of the prior pulls reported confidence below the
high signal, hence below true performance on average since the signal is drawn from
an unbiased distribution. While rational-Bayesian models such as Moore and Healy
(2008) may account for learning over experience, they fail to predict limited discrim-
ination, miscalibration of confidence before completion of the task, or the absence of
global learning. Therefore, we add to the Bayesian model a crucial but hidden aspect
of behavior under risk or uncertainty, that is doubt. We describe the behavior of sub-
jects who are uncertain of their true probability of success and become consequently
vulnerable to prediction errors and cognitive illusions if they rely essentially on what
they perceive sequentially. We designate these subjects as “intuitive Bayesians”. It
turns out, unexpectedly, that the same model also predicts the overprecision bias of
confidence, which we consider as a further confirmation of its validity.

Intuitive Bayesians may miscalibrate their own probability of success even if they
have an unbiased estimate of their own ability to succeed. This can occur if they are
uncertain of the true probability of success because they can be misled by “available”
illusory signals triggered by their doubt. The direction of doubt is entirely different
depending on whether their prior estimate led them to believe that they would fail or
that they would succeed. We thus distinguish miscalibration among those individuals
who should normally believe that they should not perform the task and those who
should normally believe that they should.

To facilitate intuition, let us first consider a subject who is almost sure to succeed
a task, either because the task is easy or because the subject has high-ability (H).
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However, the “availability” of a possible failure acts like a negative signal which leads
to overweighting this possibility (Tversky and Kahneman 1973), and underweighting
her subjective probability of success!> Epy, i.e. underconfidence:

gu = pEpy + (1 — w)0 = nEpy < Epy,
with 0 < p <1 (1)

Even though high-ability agents are almost sure of succeeding the training level,
their confidence is way below 1, confirming the Dunning—Kruger effect where high-
ability subjects underestimate their abilities. An estimate of this undercalibration bias
for an easy task is derived from Fig. 3a:

79

0.
I’LH(lraininglevel) = 0 98 = 0806 = qH(lraininglevel)

The undercalibration bias is: 1 — 0.806 = 0.194.

However, underweighting a high probability of success need not reverse the inten-
tion of doubling. Indeed, taking the expected value as the decision criterion, among
167 “able” subjects who should double if objective probabilities are used for compu-
tation, 158 (i.e. 94.6%) still intended to double according to the subjective confidence
reported before the game. !¢

Atthe other end of the spectrum, consider now a subject who is almost sure of failing,
either because the task is very difficult or because the subject has low-ability (L).
However, the “availability” of a possible success leads to overweighting her subjective
probability of success Epy , i.e. overconfidence:

gL = nEp;, + (1 =)l = Epy,
with 0 <pu <1 2)

Thus, even though low ability agents should give up a difficult task, they are overconfi-
dent and are thus tempted by the returns to success.!” In the limit, confidence remains
positive if one is almost certain to fail. This means that low-ability individuals always
exhibit a positive bottom confidence, which is in line with the Dunning—Kruger effect
(they overestimate their abilities). An estimate of this overcalibration bias for the high
level is derived from Fig. 3c:

0.34 —0.01

1 = IL igh every = T_o001

=0.333 = 9L (high level)

15 The time t = (1, 5, 10) when confidence is reported is omitted in this sub-section to alleviate notations.
16 Very close numbers are obtained for all calibration biases with confidence reported during the game.

17 This should not be confounded with motivated inference as it applies symmetrically to undesirable and
desirable outcomes.
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Similarly, the overcalibration bias for the middle level is derived from Fig. 3b:

_0.45—0.04

= = 0427 = qL(middlelevel)

!/
- ML(middle]evel) 1—-0.04

Notice that the overcalibration bias is about twice as large as the undercalibration
bias. Hence, taking the expected value as the decision criterion, among 190 “unable”
subjects who should quit if objective probabilities are used for computation, 159 (i.e.
83.7%) intended to double according to the subjective confidence reported before the
game.

To sum up, we explain both the hard—easy effect and the ability effect by an avail-
ability bias triggered by the doubt about one’s possibility to fail a relatively easy task
(underconfidence) or to succeed a relatively difficult task (overconfidence). If proba-
bilities are updated in a Bayesian fashion, the calibration bias is the relative precision
of the illusory signal. The latter is inversely related with the absolute precision of the
prior estimate and positively related with the absolute precision of the illusory signal.
Thus, we must not be surprised to find that our estimate of the calibration bias is lower
for the training level (19.4%) than for upper levels (42.7 and 33.3% respectively)
because experience in the first rounds of the training level must be more relevant for
predicting the probability of success in the training level than in subsequent levels.
And, when comparing upper levels, the illusion of success should be more credible
for the near future (middle level) than for the more distant future (high level).

This explanation is also consistent with the other measures displayed by Fig. 3a—c,
given the fact that they aggregate overconfident subjects who should not undertake the
task with underconfident subjects who should undertake it.'® If Ay is the proportion
who should stop and Ay the proportion who should continue (A +Ay = 1), the average
confidence is: AL (WEp; + 1 — 1) + AgpEpy = wEp + (1 — )iL. Confidence is
overcalibrated on average iff AL > Ep and undercalibrated iff the reverse condition
holds. The apparent overcalibration of confidence for a difficult task takes less extreme
values when the average measured ability of the group rises. For instance, the results
displayed by Fig. 3c are consistent with our estimate for the overcalibration bias if the
proportion of successful middle-ability subjects is 12% and that of successful high-
ability subjects is 25%, since these two predicted values are close to the observed
frequency of success in these groups, respectively, 10 and 27%.

Remarkably, this simple model of miscalibration also predicts limited discrimina-
tion. Although Wall is more difficult than Hill at the middle level, our subjects attributed
on average about the same confidence level to both tasks (see Table 1). High-ability
subjects who should double at middle level in the Wall condition, and low-ability sub-
jects who should stop before middle level in the Hill condition would both estimate
their chances of success to be higher with 16 anagrams to solve with Hill than with 20
anagrams with Wall. The former would underestimate their chances according to (1)

18 The rational decision to undertake a non-trivial task of level / (with a possibility to fail and regret) is
subjective. The economic criterion for making this decision rests on the comparison of the expected utilities
of all options conditional on the estimated probabilities of success at the time of decision. A rational subject
should refuse the task if the expected utility of continuing to level / or above is no higher than the expected
utility of stopping before level /. We make use of this criterion for writing Eqgs. 6 and 7 in the next Sect. 5.1.
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and the latter would overestimate them according to (2), but the difference between
the two estimates would be the same, equal to (Epy,, — Epy,)- Thus, if their prior
estimates were unbiased, intuitive (s.t. © < 1) high and low-ability subjects would
imperfectly discriminate between Hill and Wall by underestimating the difficulty gap
between them. Things are even worse for middle-ability subjects who should opt for
middle level under Hill and quit before middle level under Wall. According to (1) and
(2), those individuals would have a low estimate (u E p,y;, ) of their pass rate under Hill
and a high estimate (E py,, + 1 — ) under Wall. They would then underestimate the
difficulty gap more severely than high or low-ability subjects and they might even
give a higher estimate under Wall than under Hill'? iff E ,,, — E pyy < ((1 — 1)/ 12).
Therefore, our model implies limited discrimination of differences in difficulty by
intuitive Bayesians when the difference is not very salient.

A further implication of Bayesian updating is that, in the subject’s mind, the pre-
cision of the posterior estimate for probabilities of success, i.e. confidence in her
estimate, is increased by reception of the illusory signal, whatever the latter may
be.2 Therefore, our theory of confidence predicts the overprecision phenomenon
even before completion of the task. In contrast with the other distortions of confi-
dence, underprecision will never be observed, a prediction which is corroborated by
Moore and Healy (2008) who do not quote any study in their discussion of “underpre-
cision”. The overestimation of the precision of acquired knowledge is an additional
manifestation of the hidden search undertaken by intuitive Bayesians. Our analysis
of overprecision is congruent with the observation that greater overconfidence of this
kind was found for tasks in which subjects considered they were more competent
(Heath and Tversky 1991).

5 Predicting confidence biases and learning
5.1 Confidence updating by intuitive Bayesians

In our experiment, confidence is reported prior to the task E p, after four rounds E5p,
and after nine rounds (only for doublers) E1gp.

After going through four rounds of anagrams, a number of cues on the task have
been received and processed. Participants may recall how many anagrams they solved
in each round and in the aggregate, whether they would have passed the test in each
round or on the whole at this stage of the task, whether their performance improved or
declined from one round to the next, how fast they could solve anagrams, and so forth.
For the purpose of decision-making, cues are converted into a discrete set of i.i.d.
Bernoulli variables taking value 1 if they signal to the individual that she should reach
her goal forlevell (I = 1, 2, 3), and O otherwise. The single parameter of the Bernoulli
variable is its mean which defines the expected likelihood of success. However, this

19 1t is assumed here, as in Table 1, that the two estimates are independent.

20 gf v; denotes the prior precision of subject i’s estimate of her future success (omitting level / for simplicity)
v; + 1 = @; will be the posterior precision after reception of an i.i.d. signal. Thus, @; > v;. Notice that
v

J— L
M’_Vi+l'
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mean is essentially unknown to that individual. Thus, let it be denoted by p which is
randomly distributed within the interval [0, 1]. Assume that the prior distribution of p
is a Beta-distribution with a reported mean E p and precision v.

Behaving like intuitive Bayesians, participants update their prior expectation of
success at level [ (I = 1,2, 3) before the training session Epp; in the following
manner (see DeGroot 1970, Chapter 9):

i 1

Espr = Eipi+ Xi-4: (3)
b v+ T4 b v+ T4

with t4; > 0 designating the precision of all the independent cues perceived during

the first four rounds, and X_4.; defining the number of independent cues predicting

future success at level [ at this stage of the task. They also update the precision of the

posterior expectation Es p;, which rises from vy; to:

Vs = vy + T4 (3

with0 < X147 < 1.

Equation (3) cannot be directly estimated on the data because the estimated prob-
abilities E1 p; and E5p; are unobservable. However, it may be rewritten concisely in
terms of reported confidence ¢ (/) and g5(/) with the help of the miscalibration Eqs.
(1) and (2). Let us express generally the Bayesian transformation of the probability
estimates into confidence as:

qgs() = psiEspr + (1 — us)Dsy, 1 =(1,2,3) 4
with us; = % and?!
D,y

(1 if maxBU(' | Espy.l' = (0,...1 = 1)) = maxEU(" | Esppr,l” = (..., 3))
~ |10 otherwise.

Confidence is merely a weighted average of the prior forecast and a doubt term
acting as a contrarian Bernoulli signal.

And likewise:
q1) = puEipr+ A —wi)Diy (5)
with uy; = vlvj—l and
Dy

(1 if maxBUQ | Eypp.l’ = (0,...1— 1)) = maxEUQ" | Eyppr. 1" = (I, ....3))
“ 10 otherwise.

21 To have an unambiguous definition of D5 ;) and D(j ;) below, we use the expected utility (EU) criterion,
as explained in note 18.
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Combining (3), (4) and (5), we get:

v+ 1

_ 1
i+ ————(Ds; = D)) (6
vty 18 1—4,1 (Ds; — Dyy) (6)

/) = — X
4s(0) v+t +1 ooyt +1

0+

By the same reasoning, we can express the confidence of doublers for upper levels
[ =(2,3)as:

v+ T4+ 1

— 4+
Vz—l—fgz—i—l%()

(D9, — Ds,p)
@)

qio(l) = 5-9,

I ¢ 4+
v+ T + 1 v+ T + 1

with 79; > 14; designating the precision of all of the independent cues perceived during
the training level (9 rounds), v; + 79; the precision of the posterior expectation E1gpy,
and X defining the number of independent cues predicting future success at level [ at
this stage of the task.

Equations (6) and (7) are essentially the same with a moving prior of increasing
precision. In the absence of miscalibration, confidence reported before round 7 (¢t =
(5, 10)) would be a weighted average of prior confidence and the mean frequency of
cues predicting future success at level / since the last time confidence was reported.
With miscalibration, another term is added which can only take three values, reflecting
the occurrence and direction of change in subjects’ estimated ability with experience.
If experience confirms the prior intention to stop or continue to level /, this additional
term takes value 0 and confidence is predicted by the rational-Bayesian model (with
perfect calibration). However, if experience disconfirms the prior intention to stop
or continue to level /, confidence rises above this reference value with disappointing
experience and declines symmetrically below this reference value with encouraging
experience. Thus, our model predicts that intuitive Bayesians be conservative and
under-react symmetrically to negative experience (by diminishing their confidence
less than they should) and to positive experience (by raising their confidence less than
they should). Below, we report indeed rather small variations of confidence in our
experiment in the form of local, but not global, learning.

5.2 Regression analysis

The models of Bayesian estimation of confidence described by Eqs. (6) and (7) are
tested by an OLS in Tables 4 and 52, respectively. Reported confidence in participant
i’s ability to reach one level of the double-or-quits game is regressed in Table 4 (Table
5) on the confidence that she reported before the first (fifth) round and on a vector
Z;; of level-specific cues observable in the first four (last five) rounds, assuming that
X1-41i(X5-9,1i) = BiZi;i + €;; where B is a vector of coefficients and ¢;; an error
term of zero mean. Two dummy variables for the hill and choice treatments (wall as
reference) have been added to the regression.

22 The discrete value of confidence between 0 and 100 can be safely treated as continuous.
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Table 4 OLS estimation of the Bayesian model of confidence before round 5

Training level Middle level High level
Confidence before training session 0.79*** 0.86™** 0.90***
Freq. of rounds with 4 anagrams solved 0.14%** 0.06" 0.01ms
Freq. of rounds with 5-6 anagrams 0.29%** 0.19%** 0.13%**
solved
Freq. of rounds with non-declining 0.127%** 0.10%** 0.09***
performance
Anagrams solved per minute on rounds 0.01%** 0.01%** 0.01%**
1-4
Hill 0.03* 0.04** 0.03*
Choice 0.011s 0.021s 0.00"s
Constant —(.25%** —0.25%** —0.20%**
R? 67% 70% 76%
Observations 410 410 410

Variables: Frequency of rounds with non-declining performance represents the percentage of rounds (in
rounds 2—4) in which number of anagrams solved was equal or higher than in the previous round, it takes
four values (0, 0.33, 0.67, 1). Hill and Choice: Dummy variables with Wall as reference

ns not significant at 10%

Significance level: * p < 0.10, ** p < 0.05, *** p < 0.01 level

Table 5 OLS estimation of the Bayesian model of confidence for doublers reported before the middle level

Middle level High level
Confidence after round 4 0.772%* 0.8727%**
Freq. of rounds with 4 anagrams solved (5-9) 0.017"$ —0.024"s
Freq. of rounds with 5-6 anagrams solved (5-9) 0.120%** 0.073*
Freq. of rounds with non-declining performance (5-9) 0.034"$ 0.088**
Number of rounds used to solve 36 anagrams 0.027%** 0.021**
Anagrams solved per minute on rounds 5-9 0.003" —0.003"
Hill —0.047%** —0.02208
Choice —0.017"s 0.0220s
Constant —0.136" —0.186™*
R? 74% 81%
Observations 275 275

Variables: Frequency of rounds with non-declining performance represents the percentage of rounds (in
rounds 5-9) in which number of anagrams solved was equal or higher than in the previous round. Hill and
Choice: Dummy variables with Wall as reference. Number of rounds used to solve 36 anagrams (between
rounds 6 and 9). (5-9) refers to measures between rounds 5 and 9

ns not significant at 10% level

Significance level: * p < 0.10, ** p < 0.05, *** p < 0.01
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The regressions confirm the existence of local learning. Subjects did revise their
expectations with experience of the task as several cues have highly significant coeffi-
cients (at 1% level) with the right sign. Moreover, they analyze their own performance
correctly by setting stronger pre-requisites for themselves when the task gets more dif-
ficult. For example, their ability to solve just four anagrams per round in the training
period increases their confidence for this period only because, if such performance is
enough to ensure success in this period, it is no longer sufficient when the task becomes
more difficult. Another interesting result in Table 5 consistent with the miscalibration
term in Eq. (7) concerns low achievers who double. The later they ended up solving
the required number of anagrams in the training period, the more abruptly their con-
fidence rose. It is indeed an implication of subjects’ vulnerability to illusory signals
that low-ability doublers find themselves almost as confident as high-ability doublers
in spite of widely different performances. This result appears too on Figs. 4 and 5,
where the ability-adjusted confidence of low-ability doublers jumps from bottom to
top during the second stage of the training period.

A major testable implication of the Bayesian model lies in the coefficient of the prior
confidence, which must be interpreted as the precision of prior information relative
to the information collected by experience of the task during the training period.
This coefficient is always high in Tables 4 and 5 with a minimum value of 0.77.
Observing such high weights for the prior favors the hypothesis of rational-Bayesian
updating over adaptive expectations as the latter would considerably underweight
the prior relative to the evidence accumulated in the first four rounds. Successful
experience of the easier task in the early rounds is expected to be more predictive
of final success on the same task than in future tasks of greater difficulty. Thus, the
relative weight of experience should diminish in the confidence equation at increasing
levels or, equivalently, the relative weight of prior confidence should rise. Indeed,
the coefficient of prior confidence increases continuously with the level. It rises from
0.79 to 0.86 and 0.90 in Table 4; and, from 0.77 to 0.87 in Table 5. In parallel, the
coefficients of cues signaling a successful experience continuously diminish when the
level rises. We can use the mathematical expressions of the two coefficients of prior
confidence derived from Eqs. (6) and (7) to calculate the precision of early experience
relative to prior confidence (before the task) % (I = 1,2, 3). With the data of Table
4, we get 0.266 for the training level, 0.163 for the middle level, and 0.111 for the
high level. Similarly, we compute the precision of late experience relative to prior
confidence (before the task) tv—"l’ (I = 2, 3). With the data of Table 5, we get 0.506 for
middle level and 0.274 for high level. The impact of learning from experience appears
to be substantial and with increasing returns. By elimination of v;, we finally calculate
the precision of early experience relative to total experience during the training period
Wl (] = 2,3). We obtain 0.322 for middle level and 0.405 for high level. The rate

To;

of increase of precision resulting from longer experience (from 4 to 9 rounds) T‘”t%uf‘”
reaches a considerable 211% at middle level and 147% at high level, which forms
indirect evidence of the overprecision phenomenon.
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Table 6 Estimation of posterior confidence (after doubling) and ex post chances of success at the middle
level

Level 2

Confidence After Chances of success
Confidence after round 4 0.778%** 0.034"8
Freq. of rounds with 4 anagrams solved (5-9) 0.014" 0.276*
Freq. of rounds with 5-6 anagrams solved (5-9) 0.107%** 0.348**
Freq. of rounds with non-declining performance (5-9) 0.04308 —0.036"
Number of rounds used to solve 36 anagrams 0.024%** —0.115%**
Anagrams solved per minute on rounds 5-9 0.009"s 0.070%**
Ability —0.007"s 0.0627%**
Hill —0.046*** 0.097"
Choice —0.018" —0.100*
Constant —0.106" 0.598*
R? 74% 30%
Observations 275 275

Sample: to be comparable, these regressions consider only those who succeeded first level and decided to
double to second level

ns not significant at 10% level.

Variables: Frequency of rounds with non-declining performance represents the percentage of rounds (in
rounds 5-9) in which number of anagrams solved was equal or higher than in the previous round. Hill and
Choice: Dummy variables with Wall as reference. Number of rounds used to solve 36 anagrams (between
rounds 6 and 9). (5-9) refers to measures between rounds 5 and 9. Number of rounds used to solve 36
anagrams (between rounds 6 and 9)

Significance level: * p < 0.10, ** p < 0.05, *** p < 0.01

5.3 Why do intuitive Bayesians make wrong (and costly) predictions
of performance?

The answer to this important question, and to the related planning fallacy, is contained
in Table 6, which uses the same set of potential predictors to forecast confidence in
succeeding the middle level after doubling and ex post chances of success?>: prior con-
fidence, ability, and performance cues observed subsequently (during rounds 5-9). The
mere comparison of coefficients between the two columns of Table 6 demonstrates
that posterior confidence is based on both objective performance cues and subjective
variables, whereas the chances of success are predicted by the objective performance
cues and ability only. The latter are the frequencies of rounds with 4 and with 5-6
anagrams solved, respectively, (effort) and the speed of anagram resolution (ability);
and the subjective variables are essentially the prior confidence and the illusory signal
given to low achievers by their (lucky) initial success. Remarkably, the number of
rounds needed for solving 36 anagrams (varying from 6 to 9), which indicates low
achievement and recommends quitting the game at an early stage, acts as an illusory

23 We used an OLS to predict probabilities of success so as to make the comparison with confidence trans-
parent. Estimating an OLS instead of a Probit in columns 3 and 4 did not affect the qualitative conclusions.
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Table 7 The prevalence and cost of miscalibration among doublers

Prescription of subjective ~ Prescription of normative ~ Category Share (%) Rate of
expected value expected value failure (%)
Double Double Able and calibrated 47 52

Stop Stop Unable and calibrated 12 78

Double Stop Overconfident 36 91

Stop Double Underconfident 5 57

signal with a significantly positive effect on confidence in column 1; but the same
variable acts as a correlate of low ability in column 2 with a strong negative effect on
the chances of success at middle level. Indeed, the subjective predictors of posterior
confidence do not predict success when the objective performance cues are held con-
stant. Prior confidence predicts the posterior confidence that conditions the decision to
double?* but fails to predict success because it is based on an intuitive reasoning which
suffers from systematic biases. Past errors convey to the prior through the aggregation
procedure of Bayesian calculus and may add up with further errors caused by the
perception of illusory signals.

To reinforce our demonstration, we used the regressions listed in Table 6 to predict
normative (based on rational expectations) and subjective (confidence-based) expected
values> and determine the best choice of doubling or quitting prescribed by those alter-
native models. As expected, the normative model’s predictions (based on the true—ex
post—probabilities) deviate farther from reality than the subjective model’s: 48 versus
17% of the time. However, the confidence-based prescriptions have no information
value since the rate of failure is the same whether one follows the prescription (69%)
or not (70%). By contrast, the normative prescriptions have great value since the rate
of failure is 52% for those who respect them versus 88% for those who do not. Finally,
Table 7 divides the sample of doublers in four categories: 47% are able and calibrated,
12% are unable and calibrated, 36% are overconfident and 5% are underconfident.
Rates of failure are markedly different among these categories: 52% only for the able
calibrated, 57% for the (able) underconfident, 78% for the unable calibrated and 91%
for the (unable) overconfident! Undeniably, the prevalence of miscalibration among
doublers is substantial and its cost in terms of failure is massive.

24 Conditional on initial success, prior confidence is a good predictor of the future decision to double
(regression not shown). This is good news for the quality of confidence reports; and it confirms that subjects
behave as intuitive Bayesians who rely on their own subjective estimates of success to make the choice of
doubling.

25 The predicted values were computed on regressions containing only the significant variables. We checked
that these values stayed close to predictions derived from the regressions listed in Table 6 which contain
non significant variables too.
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6 Conclusion

We designed an experimental analog to the popular double-or-quits game to compare
the speed of learning one’s ability to perform a task in isolation with the speed of rising
confidence as the task gets increasingly difficult. In simple words, we found that people
on average learn to be overconfident faster than they learn their true ability. We present
a new intuitive-Bayesian model of confidence which integrates confidence biases and
learning. The distinctive feature of our model of self-confidence is that it rests solely
on a Bayesian representation of the cognitive process: intuitive people predict their
own probability of performing a task on the basis of cues and contrarian illusory
signals related to the task that they perceive sequentially. Confidence biases arise in
our opinion, not from an irrationality of the treatment of information, but from the
poor quality and subjectivity of the information being treated. For instance, we rule
out self-attribution biases, motivated cognition, self-image concerns and manipulation
of beliefs but we describe people as being fundamentally uncertain of their future
performance and taking all the information they can get with limited discrimination,
including cognitive illusions. Above all, a persistent doubt about their true ability is
responsible for their perception of contrarian illusory signals that make them believe,
either in their possible failure if they should succeed or in their possible success if
they should fail.

Our intuitive-Bayesian theory of estimation combines parsimoniously the cognitive
bias and the learning approach. It brings a novel interpretation of the cognitive bias and
it provides a general account of estimation biases. Indeed, we did not attribute confi-
dence biases to specific cognitive errors but to the fundamental uncertainty about one’s
true ability; and we predicted phenomena beyond the hard—easy and Dunning—Kruger
effect which could not be explained all together by previous models: miscalibration
and overprecision before completion of the task, limited discrimination, conservatism,
slow learning and planning fallacy. Moreover, we showed that these biases are likely
to persist since the Bayesian aggregation of past information consolidates the accu-
mulation of errors, and the perception of illusory signals generates conservatism and
under-reaction to events. Taken together, these two features may explain why intuitive
Bayesians make systematically wrong and costly predictions of their own performance.
Dont we systematically underestimate the time needed to perform a new (difficult) task
and never seem to learn?

Our analysis of overconfidence is restricted to the overestimation bias. The lat-
ter must be carefully distinguished from the overplacement bias since the hard—easy
effect that we observed here with absolute confidence has often been reversed when
observing relative confidence: overplacement for an easy task (like driving one’s car)
and underplacement for a novel or difficult task. The reasons for overplacement are
probably not unique and context-dependent. When people really compete, the over
(under) placement bias may result from their observing and knowing their own abil-
ity (although imperfectly) better than others’. If both high-ability and low-ability
individuals compare themselves with average-ability others, the former are likely to
experience overplacement and the latter underplacement. The same reasoning applies
to individuals familiar or unfamiliar with the task, and to individuals who were ini-
tially successful or unsuccessful with the task. When no real competition is involved,
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the overplacement effect relates to an evaluation-based estimate of probability. While
there is an underlying choice to be made in the estimation task, no such thing is present
in the latter case. If I ask you whether you consider yourself as a top driver (relative to
others), I do not generally expect you to show me how you drive. Preference reversals
are not uncommon between choices and evaluations (Lichtenstein and Slovic 1971).
Thus, the present analysis of overestimation is consistent with reasonable explana-
tions of overplacement. Moreover, it predicts the overprecision phenomenon and even
rules out underprecision. This demonstrates that overestimation and overprecision are
related but different biases.

Double-or-quits-type behavior can be found in many important decisions like addic-
tive gambling (Goodie 2005), military conquests (Johnson 2004), business expansion
(Malmendier and Tate 2005), speculative behavior (Shiller 2000), educational choices
(Breen 2001), etc. Overconfident players, chiefs, entrepreneurs, traders, or students are
inclined to take excessive risks; they are unable to stop at the right time and eventually
fail more than well-calibrated pe:rsons26 (e.g., Barber and Odean 2001; Camerer and
Lovallo 1999). In contrast, under-confident individuals won’t take enough risks and
stay permanently out of successful endeavors.

On the theoretical side, the intuitive-Bayesian model of confidence before com-
pletion of a task creates a link between confidence and decision analyses and their
respective biases. Confidence biases and the anomalies of decision under risk or uncer-
tainty can be analyzed with the same tools. The estimation of one’s ability implies an
implicit comparison between an uncertain binary lottery and a reference outcome. It
is a by-product of the question: should I double or quit? This is a question of interest
to behavioral and decision theorists.
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Appendix

See Fig. 7.

26 However, overconfidence may pay off when there is uncertainty about opponents’ real strengths, and
when the benefits of the prize at stake are sufficiently larger than the costs (e.g., Johnson and Fowler 2011;
Anderson et al. 2012).
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Fig. 7 Example of the task screen. A Actual round (round 5 in this example). B List of anagrams to be
decoded. C Fields to type the correct word. D Feedback. The “OK” appears when the solution for the
anagram is correct. E Number of correct anagrams in the current round. ' Total anagrams to be decoded
in the current round, 6 in this example (first level). G Number of cumulated correct anagrams, including
the current and previous rounds. H Number of correct anagrams required to solve the current level, in this
example 36 (first level). / Remaining time. The total time is 8 min, we show only the 3 last minutes. / Button
to go to next round. Participants can pass to next round without clearing all anagrams in the current level,
but they cannot come back once they pushed the button
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