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Abstract

This paper considers binary response models where errors are uncorrelated with a set of

instrumental variables and are independent of a continuous regressor v, conditional on all other

variables. It is shown that these exclusion restrictions are not sufficient for identification and that

additional identifying assumptions are needed. Such an assumption, introduced by Lewbel

[Semiparametric qualitative response model estimation with unknown heteroskedasticity or

instrumental variables. Journal of Econometrics 97, 145–177], is that the support of the continuous

regressor is large, but we show that it significantly restricts the class of binary phenomena which can

be analysed. We propose an alternative additional assumption under which b remains just identified

and the estimation unchanged. This alternative assumption does not impose specific restrictions on

the data, which broadens the scope of the estimation method in empirical work. The semiparametric

efficiency bound of the model is also established and an existing estimator is shown to achieve that

bound. The efficient estimator uses a plug-in density estimate. It is shown that plugging in the true

density rather than an estimate is inefficient. Extensions to ordered choice models are provided.
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1. Introduction

Let y be a binary outcome, x a vector of covariates and v a continuous covariate. This
paper considers the following binary response model:

y ¼ 1ðxbþ vþ �40Þ, (LV)

where errors, �, are uncorrelated with a set of instrumental variables z (i.e., Eðz0eÞ ¼ 0), and
conditionally independent of the continuous regressor, v, (i.e., partial independence,
F �ð� jx; z; vÞ ¼ F �ð� jx; zÞÞ. As discussed below, these exclusion restrictions arise naturally
in many economic models and the purpose of this paper is to analyse the conditions under
which they can be used in empirical applications, as well as the conditions under which
they provide a means for identifying the structural parameters of the latent model.

It is shown that the partial independence assumption does not impose very strong
restrictions on the data and can be used in a wide range of cases. Specifically, it is shown
that any binary outcome can be analysed with a latent model satisfying partial
independence provided that it is monotone in v (i.e., Prðy ¼ 1 j v;x; zÞ is monotone in v).
The problem is that partial-independence is not sufficient for identification of the
parameter of interest b, even when it is combined with the uncorrelated instrument
assumption. Additional restrictions are needed for identification. Such an additional
restriction is the assumption, introduced by Lewbel (2000), that the support of the special
regressor is large (Supp(vÞ � Suppð�xb� �Þ). Our second result is that the combination of
uncorrelated instruments, partial-independence and large-support assumptions provides
exact identification of b. Yet, it is shown that the large-support assumption significantly
restricts the class of binary phenomena which can be analysed through (LV). Specifically,
we show that the large-support assumption can only be used when the conditional
probability of success Prðy ¼ 1 j v;x; zÞ increases from 0 to 1 over the support of v, which is
admittedly restrictive. Large-support conditions are actually quite common in the
literature about semi-parametric limited-dependent variable models (see e.g., Manski,
1975, 1985; Han, 1987; Horowitz, 1992; Cavanagh and Sherman, 1998), but they represent
a potential obstacle to empirical applications.

This is why we propose an alternative to the large-support condition. Parameter b
remains just identified and the estimation unchanged when a symmetry condition on the
tails of the errors e holds. This alternative to the large-support assumption can be used
when the conditional probability of success does not vary from 0 to 1 over the support of v,
which increases the usefulness of the setting in empirical work.

Making identification restrictions as weak as possible is not the only concern when
estimating binary choice models. The simplicity of the approach and its efficiency
properties should also be taken into account. This is where the paper presents two further
contributions. We establish the semi-parametric efficiency bound for the parameter under
partial independence and uncorrelated instrument assumptions by using the framework
proposed by Severini and Tripathi (2001). It is noteworthy that the special-regressor
estimator proposed by Lewbel (2000) achieves this bound (under some regularity
conditions). The efficient estimator uses a plug-in density. It is shown that plugging in
the true density, when it is known, rather than an estimate is inefficient. This finding was
conjectured by Lewbel (2000).

Generally speaking, the set of identifying restrictions analysed in this paper provides
interesting means to overcome Manski’s fundamental impossibility result according to
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which an uncorrelated-error restriction (i.e., Eðx0eÞ ¼ Eðv0eÞ ¼ 0) or even a mean-
independence restriction (i.e., Eð� jx; vÞ ¼ 0Þ is not sufficient for identifying b no matter
what conditions on the support of ðv;xÞ are adopted (see Manski, 1988). Also, the set-up
used in this paper imposes much weaker distributional assumptions on the error terms
than standard parametric models or than the semi-parametric methods that are based on
the properties of statistical independence (i.e., F �ð� jx; vÞ ¼ F �ð�Þ) or of single-index
sufficiency (i.e., F �ð� jx; vÞ ¼ F �ð� jxbþ vÞ) see e.g. Cosslett (1983), Ruud (1983), Han
(1987), Powell et al. (1989), Ichimura (1993), Klein and Spady (1993) who provide
estimators of b under statistical independence or index sufficiency.
The quantile-independence assumption does not provide just identification of the

parameter of interest, but permits slightly more general forms of conditional hetero-
skedasticity than the exclusion restrictions used in this paper. Still, the fact remains that very
few empirical studies use the corresponding maximum score estimation method, as developed
by Manski (1975, 1985) or its smoothed version developed by Horowitz (1992). The
numerical methods needed for optimizing the score may be one cause of underutilization; the
lower than root-n rate of convergence might be another reason. Some advances have recently
been proposed by Chen (2002) who suggests strengthening the median-independence
assumption into conditional symmetry and a weak restriction on conditional heteroskedas-
ticity. Estimation can be proven to be root-n consistent, though optimization is still needed.
Under the identifying restrictions used in this paper, the special-regressor estimator
developed by Lewbel (2000) can be directly obtained without optimization and is root-n
consistent. The implementation of the estimation method is quite simple. It only requires the
estimation of a conditional density and a linear regression. Honoré and Lewbel (2002)
extends this method to estimating binary choice models using panel data and allowing for
individual effects. Recent empirical applications of this estimation method include Anton et
al. (2001), Lewbel et al. (2001), Maurin (2002), Lewbel (2003).
The paper is organized as follows.
Section 2 provides the equivalence result between the set of latent models satisfying

uncorrelated instruments, partial independence and large-support conditions and the set of
random variables ðy;x; v; zÞ such that the conditional probability of success Prðy ¼
1 j v; x; zÞ increases from 0 to 1 when v varies over its support.
Section 3 shows that uncorrelated instruments and partial independence alone are not

sufficient for identification of b. We propose an alternative to the large-support
assumption for obtaining just identification of b. The only condition that Prðy ¼
1 j v; x; zÞ should satisfy is to be monotone in v.
In Section 4, we state the semi-parametric efficiency bound and the efficiency

comparison between two estimators using estimated or true density functions.
Section 5 provides extensions of the equivalence result to ordered choice models and

Section 6 concludes. All proofs are in the Appendices.

2. The set-up and the equivalence result

Let the ‘‘data’’ be given by the distribution of the following random variable where, for
simplicity, we only consider random samples and we do not subscript individual
observations by i:

o ¼ ðy; v; x; zÞ.
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Variable y is the binary variable, v is the continuous regressor, x are the ‘‘structural’’
explanatory variables and z are the instruments. At this point, explanatory and
instrumental variables cannot be distinguished since no model has been written. Their
respective role in the latent model will be clarified below. We first introduce some
regularity conditions on the distribution of o, which will be assumed valid in the rest of the
text.

Assumption R(egularity).
R:i: (Binary model): The support of the distribution of y is f0; 1g.
R:ii: (Covariates and instruments): The support of the distribution of ðx; zÞ is a compact

set Sx;z � Rp � Rq. The dimension of the set Sx;z is rppþ q where pþ q� r are the
potential overlaps and functional dependencies.1 The probability measure, dFx;z, is
supposed to be absolutely continuous with respect to a product of Lebesgue and discrete
measures so as to allow continuous, discrete or mixed regressors. Finally, rankðEðz0xÞÞ ¼ p.

R:iii: (Special regressor): The support of the conditional distribution of v conditional on
ðx; zÞ is �vL; vH ½ almost everywhere (a.e.) Fx;z. Moreover, vLo0ovH and vL and vH can be
infinite. The conditional distribution is denoted Fvð: jx; zÞ and is defined a.e. Fx;z. It is
absolutely continuous with respect to the Lebesgue measure and its density f ðv jx; zÞ is
continuous and bounded away from zero except possibly on the boundary of the support
of v.

R:iv: (Functional independence of v and ðx; zÞ): There is no subspace of �vL; vH ½�Sx;z of
dimension strictly less than rþ 1 which probability measure, ðF vð: jx; zÞ:F x;zÞ, is equal to 1.

The first two assumptions define a binary model where there are p explanatory variables
and q instrumental variables (assumption R:ii). According to assumption R:ii, we could
denote the functionally independent description of ðx; zÞ as u and this notation could be
used interchangeably with ðx; zÞ. Denoting ðx; zÞ as u may lead to less ambiguous arguments
below at the cost of additional notation. We prefer to stick to the more parsimonious
notation ðx; zÞ. Assumption R:iii defines what is meant by the continuity of the special
regressor v. The support of v might be made dependent on ðx; zÞ with no loss of generality.
Assumption R:iv avoids the degenerate case where v and ðx; zÞ are functionally dependent.

We now consider two possible formulations of the distribution of y conditional on v and
ðx; zÞ and show that they are equivalent. The first formulation is a semi-parametric latent
index binary model as in Lewbel (2000) and Honoré and Lewbel (2002). The second one is
a non-parametric binary model. Let us start with the latent binary model:

y ¼ 1ðxbþ vþ �40Þ, (LV)

where 1ðAÞ is the indicator function that equals one if A is true and zero otherwise and
b 2 Rp is the vector of coefficients of interest. The distribution of the random error �
satisfies the following properties as in Lewbel (2000):

Assumption L(atent).
ðL:1Þ (Partial independence): The conditional distribution of � given covariates x and

variables z is independent of the special regressor v:

F eð: j v;x; zÞ ¼ F eð: jx; zÞ.
1With no loss of generality, the p explanatory variables x can partially overlap with the qXp instrumental

variables z. Variables ðx; zÞ may also be functionally dependent (for instance x, x2, logðxÞ; . . .). A collection

ðx1; :; xK Þ of real random variables is functionally independent if its support is of dimension K (i.e., there is no set

of dimension strictly lower than K which probability measure is equal to 1).
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The support of e is denoted Oeðx; zÞ and its distribution function F eð: jx; zÞ is supposed to
be absolutely continuous. Denote the density function as f eð: jx; zÞ.
ðL:2Þ (Large support): The support of �xb� e is a subset of �vL; vH ½.
ðL:3Þ (Uncorrelated instruments): The random shock e is uncorrelated with variables z:

Eðz0eÞ ¼ 0.
Regarding ðL:1Þ, it should be noted that Powell (1994) discusses partial independence

assumptions (calling them exclusion restrictions) in the context of other semi-parametric
models, i.e., without combining them with ðL:2Þ or ðL:3Þ. Generally speaking, partial
independence assumptions are akin to exogeneity assumptions and arise in many economic
models. For example, in a labour supply model where e represents unobserved ability,
partial independence is satisfied by any variable that affects or is correlated with labour
supply decisions but not with ability (such as government benefits). In consumer demand
models where e represents unobserved preference variation, prices satisfy the partial
independence condition when goods are homogenous and markets are competitive. In
contingent valuation studies, where e stands for unobserved taste variation, v can be the
bid that is determined by experimental design, and so may be constructed by the researcher
to satisfy the necessary exclusion and support restrictions. Lewbel et al. (2001) provide an
empirical application for this case. Other empirical applications using the partial
independence assumption include Maurin (2002) who estimate an education production
function using date of birth (within the year) as special regressor v. Date of birth within the
year significantly influences children’s outcomes in primary school. Given that this variable
is plausibly independent from children’s unobserved ability, partial independence is
plausible too. Cogneau and Maurin (2002) study demand for education in primary schools
in Madagascar, using the same special regressor. Lewbel (2003) studies the probability of
obtaining a university degree using the cost of attending a local public college (relative to
local unskilled wages) as a special regressor. Anton et al. (2001) use an individual’s age as a
special regressor in a duration model.
As it turns out, the partial independence assumption provides an identifying restriction

which can be applied in contexts which are economically interesting. In his recent
contribution, Lewbel (2000) constructs an estimator of b by combining partial
independence, with uncorrelated instruments and large-support assumptions. However,
the scope of this method and whether it provides (over) identification of b is unclear. The
next section describes the class of binary phenomena that may actually be analysed
through this set-up.

2.1. The equivalence result

Consider ðb;F eð: jx; zÞÞ, a latent structure satisfying partial independence, support and
moment conditions (L:1–L:3) and denote Prðy ¼ 1 j v;x; zÞ the conditional distribution
generated by ðb, F eð: jx; zÞÞ through the binary transformation (LV). The following lemma
shows that this conditional distribution necessarily increases from 0 to 1 when v varies over
its support.

Lemma 1. Under partial independence ðL:1Þ and large support ðL:2Þ conditions, we

necessarily have:
(NP:1Þ (Monotonicity): The conditional probability Prðyi ¼ 1 j v;x; zÞ is increasing and

absolutely continuous in v a.e. F x;z.
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ðNP:2Þ (Support): There exist (a.e. F x;z) two values vlðx; zÞ and vhðx; zÞ (possibly infinite) in

½vL; vH � such that:

Prðyi ¼ 1 j vl ;x; zÞ ¼ 0; Prðyi ¼ 1 j vh;x; zÞ ¼ 1.

Proof. See Appendix A.1.

Condition ðNP:1Þ is a direct consequence of the fact that v is an exogenous regressor
positively affecting the propensity of success ðy ¼ 1Þ. As for condition (NP:2Þ, it is a direct
consequence of the large-support hypothesis, which implies that the propensity of success
of persons with the lowest (largest) v is always negative (positive) regardless of their
unobserved and observed characteristics.

Summing up, if we denote:

MNP ¼ fPrðy ¼ 1 j v;x; zÞ satisfying monotonicity ðNP:1Þ,

and support ðNP:2Þ conditionsg

and

ML ¼ fPrðy ¼ 1 j v;x; zÞ generated through (LV)

by some ðb;F eð: jx; zÞÞ satisfying ðL:12L:3Þg

we have just proved that ML �MNP. Let us analyse the condition under which
MNP �ML.

Lemma 2. Let Prðy ¼ 1 j v;x; zÞ be a conditional probability satisfying monotonicity ðNP:1Þ
and support ðNP:2Þ conditions. Any latent model ðb;F eð: jx; zÞÞ satisfying (L:1–L:3) and

generating Prðy ¼ 1 j v;x; zÞ through transformation (LV) necessarily satisfies the following

moment conditions:

Eðz0xÞ:b ¼ Eðz0 ~yÞ, (1)

where

~y ¼
y� 1ðv40Þ

f ðv jx; zÞ
(2)

is the transform of y introduced by Lewbel (2000).

Proof. See Appendix A.2.

When there exist as many instruments as explanatory variables (q ¼ p), condition (1)
defines a unique parameter b and MNP �ML. In contrast, when there are more
instruments than explanatory variables (q4p), it can happen that condition (1) has no
solution, as in the usual linear model. To address this issue, we have to complete the setting
by the following regularity condition:

(R.v) The distribution of o ¼ ðy; v;x; zÞ is such that condition (1) has a solution.
Under ðR:vÞ, this solution is unique, MNP �ML and, taken together, Lemmas 1 and 2

prove our first basic result:

Theorem 3. Under regularity conditions (Ri-Rv), the set of latent models defined by

conditions (L:1–L:3) and transformation (LV) is one-to-one with the set of conditional

probabilities satisfying (NP:1–NP:2).



ARTICLE IN PRESS
T. Magnac, E. Maurin / Journal of Econometrics 139 (2007) 76–10482
Put differently, any statistical model in MNP is generated by a unique structural model
in ML and reciprocally, any structural model in ML generates a unique statistical
distribution of the binary outcome satisfying (NP:1–NP:2). Conditional on (NP:1–NP:2),
the parameters of interest in the structural model are just identified, in that they are defined
by a unique function of the joint distribution of the data.2
2.2. Discussion

Theorem 3 sheds some light on the deep nature of the partial independence hypothesis
ðL:1Þ. This theorem shows that combining ðL:1Þ with a large-support assumption such as
ðL:2Þ and an uncorrelated-error condition such as ðL:3Þ is exactly what is needed to
overcome Manski’s underidentification result, according to which an uncorrelated-error
restriction (i.e., Eðx0eÞ ¼ Eðv0eÞ ¼ 0) or even a mean-independence restriction (i.e.,
Eð� jx; vÞ ¼ 0Þ is not sufficient for identifying b no matter what conditions on the support
of ðv; xÞ are adopted (see Manski, 1988). Adding ðL:1Þ to ðL:2Þ and ðL:3Þ provides a
framework where b is just identified. Adding ðL:1Þ to ðL:3Þ only would not be sufficient as
shown in Section 3, while adding more than ðL:1Þ to ðL:2Þ and ðL:3Þ would generate
testable overidentifying restrictions.3

It should be noted that the partial independence assumption is closely connected with
the control function assumption used by Blundell and Powell (2004). Transposing Blundell
and Powell’s model into our framework involves splitting up regressors x ¼ ðz1; y2Þ into a
set of exogenous regressors, z1, and a set of endogenous regressors, y2. The complete list of
instruments comprises v and z ¼ ðz1; z2Þ and the model is y ¼ 1ðvþ z1b1 þ y2b2 þ �40Þ.
There is also an auxiliary first-stage regression where the error term is defined as,
u ¼ y2 � Eðy2 j v; zÞ.
Using these notations, Blundell and Powell’s identifying assumption can be written

F eð: j y2; z; vÞ � F eð: j u; z; vÞ ¼ F eð: j uÞ,

whereas the partial independence assumption used in this paper is

F eð: j y2; z; vÞ ¼ F eð: j y2; zÞ � F eð: j uþ Eðy2 j v; zÞ; zÞ.

Consequently, Blundell and Powell’s model requires a stronger exclusion restriction if
Eðy2 j v; zÞ does not depend on v. However, generally the models are not nested.4 Other
differences are that the control function approach requires the endogenous regressor y2 to
be continuous, although it does not require a large-support assumption or that the
regressor v should be continuous.
2Apart from over-identifying restrictions provided by supernumerary instruments, Powell (1994) proposes a

definition of semi-parametric (versus non-parametric) modelling that exploits the distinction between just-

identification and over-identification. According to Powell (1994), a model can be said to be ‘‘non-parametric’’

whenever the parameters are just identified, i.e., defined by a unique function of the joint distribution of the data.

In that specific sense, our model is non-parametric.
3For instance, strengthening ðL:3Þ into a mean-independence restriction Eðe j zÞ ¼ 0 generates additional

restrictions. We conjecture that most results derived in this paper can be extended to this case in the way that they

are in the usual linear model.
4Although as pointed out by a referee, the partial independence assumption could be rewritten so that e and v

are independent conditionally on y2, z1 and Eðy2 j z; vÞ (instead of z2). The partial independance assumption is then

strictly weaker than the assumption used by Blundell and Powell.
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Regarding the comparison with quantile-independence assumptions, it should be noted
that quantile independence assumes that one quantile of e is independent of all covariates,
whereas the partial independence assumption used in this paper is equivalent to assuming
that all quantiles of e are independent of one covariate. In this crude sense, both
assumptions seem comparably restrictive.

Another difference is that partial independence yields just identification of b while
quantile independence imposes testable overidentifying restrictions.5 Also, the partial
independence hypothesis makes it possible to estimate the distribution of the unobserved
residuals while the quantile-independence assumption does not. This property may be of
particular interest for evaluating the impact of the covariates on the probability of
observing y ¼ 1 (Lewbel et al., 2001). The price to pay is that partial independence requires
conditions on the support of the covariates that are stronger than the conditions required
under quantile independence. As shown by Horowitz (1998), a sufficient support condition
for estimating b under quantile-independence is that for a set of x of positive mass, vþ xb
takes both positive and negative values when v varies over its support. It is weaker (and in
some cases strictly weaker) than ðL:2Þ which implies that vþ xb takes both positive and
negative value for any x when v varies over its support. Lastly, it should be noted that the
endogeneity of covariates can be also accommodated in a quantile independence setting
(Hong and Tamer, 2003) so that the two methods are on par in this respect.

3. Unrestricted support and identification

Generally speaking, the main potential obstacle to empirical application of the latent
model under consideration is not so much the partial independence assumption as such,
but the accompanying large-support assumption. As shown by the equivalence result, this
assumption restricts the domain of application of the latent model to binary phenomena
such that the probability of success varies from 0 to 1 when v varies over its support.6

The identification of structural parameters in binary choice models can be lost when the
support of the regressors is not sufficiently rich. This is true when using the index
sufficiency but all regressors are discrete or when using the quantile-independence models
(Horowitz, 1998) and it remains true under the partial independence hypothesis. Thus,
assuming the existence of large-support, continuous regressors is not uncommon in the
literature on semiparametric limited-dependent variable models (see e.g., Han, 1987;
Cavanagh and Sherman, 1998; Manski, 1975, 1975; Horowitz, 1992).

In this section, we maintain ðL:1Þ (and ðL:3Þ), but we relax the large-support assumption.
In such a case, the conditional distribution Prðy ¼ 1 j v;x; zÞ obtained through (LV) still
satisfies ðNP:1Þ, but does not satisfy ðNP:2Þ anymore. More specifically, in the absence of
any restrictions on the support of �, the only restriction on Prðy ¼ 1 j v;x; zÞ is that it should
be zero or one when v is �1. If vH ¼ þ1 and Prðy ¼ 1 j vH ;x; zÞo1 (or if vL ¼ �1 and
5Namely, the hypersurface in the space of covariates describing the conditional quantile of the dependent

variable is linear.
6However, the large-support assumption is quite natural in many settings. For instance, it seems a plausible

assumption for events that necessarily take place within a specific period of the life-cycle. When y describes such

phenomena as primary-school attendance, school-leaving, leaving parental home, the entry into (or the exit from)

the labour market (for male workers), age is the most obvious candidate as the special continuous regressor, v, and

the large-support restriction is satisfied. For instance, sufficiently young children have never attended primary-

school and sufficiently old children have all attended primary school (in developed countries at least).
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Prðy ¼ 1 j vL;x; zÞ40Þ, no latent variable model in ML can lead to the conditional
probability function. It is the reason why we shall exclude this case by setting:

ðNP:20Þlimv!þ1 Prðy ¼ 1 j v; x; zÞ ¼ 1 and limv!�1 Prðy ¼ 1 j v;x; zÞ ¼ 0.

Observe also that when the support of v coincides with the real line (i.e., vH ¼ þ1 and
vL ¼ �1Þ ðNP:20Þ implies ðNP:2Þ. Cases of interest are therefore vL4�1 or/and
vHoþ1, conditions that we shall assume in this section.
In the remainder of the section, we consider statistical models satisfying ðNP:1Þ–ðNP:20Þ

and we seek the conditions under which the parameters of the latent model b are identified.
We first show that the combination of assumptions of partial independence (L:1) and
uncorrelated-error (L:3) alone is not sufficient for identifying b. Secondly, we present a set
of additional identifying restrictions leading to exact identification. It is shown that it
preserves the validity of Lewbel’s estimation procedure.

3.1. The necessity of additional identifying restrictions

Consider a conditional distribution Prðy ¼ 1 j v;x; zÞ satisfying the monotonicity
condition ðNP:1Þ and condition ðNP:20Þ. Assume that this conditional probability is the
image of a latent model ðb;F eð: jx; zÞÞ which satisfies partial independence ðL:1Þ. By
definition, for any v in �vL; vH ½, we have

Prðy ¼ 1 j v; x; zÞ ¼

Z
vþxbþe40;e2Oeðx;zÞ

f eðe jx; zÞde

and thus:

Prðy ¼ 1 j v;x; zÞ � Prðy ¼ 1 j vL;x; zÞ

¼

Z �ðvLþxbÞ

�ðvþxbÞ
f eðe jx; zÞde ¼ F eð�ðvL þ xbÞ jx; zÞ � F eð�ðvþ xbÞ jx; zÞ.

Thus, for any e in � � ðvH þ xbÞ;�ðvL þ xbÞ½, we necessarily have

f eðe jx; zÞ ¼
q
qv

Prðy ¼ 1 j v; x; zÞjv¼�ðxbþeÞ. (3)

In contrast to the large-support case, the support of e (conditional on x and z) is not
necessarily included in � � ðvH þ xbÞ;�ðvL þ xbÞ½ and f eðe jx; zÞ has no non-parametric
counterpart for e in

BðxÞ ¼� �1;�ðvH þ xbÞ½[� � ðvL þ xbÞ;þ1½.

The only restrictions on the distribution of e in BðxÞ are the following:7

Prfep� ðvH þ xbÞ jx; zg ¼ 1� Prðy ¼ 1 j vH ; x; zÞ,

Prfe4� ðvL þ xbÞ jx; zg ¼ Prðy ¼ 1 j vL; x; zÞ. ð4Þ

Hence, any latent model ðb;F eð: jx; zÞÞ satisfying (L:1) and generating function Prðy ¼
1 j v; x; zÞ through (LV) necessarily satisfies (3) and (4). Conversely, any latent model
ðb;F eð: jx; zÞÞ satisfying (L:1) and (3) and (4) generate function Prðy ¼ 1 j v; x; zÞ through
(LV). From this, it follows clearly that the partial independence hypothesis is not sufficient
7As the distribution of e is absolutely continuous, the use of large or strict inequalities is equivalent.
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for complete identification of F eð: jx; zÞ, even when b is known. Under (L:1), the only
restrictions on F eð: jx; zÞ when e is in BðxÞ are given by (4), which means that the
distribution of e conditional on e 2 BðxÞ is left completely unidentified.

In settings like index sufficiency models, the identification of the distribution of error
terms is not a necessary condition for identifying parameter b. However, it is a necessary
condition in the present setting since—when used as an identifying restriction—(L:3) is a
moment condition which uses the distribution of random shocks over its whole support.
Specifically, if S represents the set of observationally equivalent values of the parameter,

S ¼ fb 2 Rp j 9F eð: jx; zÞ satisfying ðL:1Þ and ðL:3Þ

s.t. ðb;F eð: jx; zÞÞ generates Prðy ¼ 1 j v;x; zÞg

the next proposition states that the size of S is unbounded. It contains an infinite number
of elements which value may be chosen arbitrarily differently from the value that b would
take if the large-support assumption were true.

Proposition 4. Consider Prðy ¼ 1 j v;x; zÞ satisfying ðNP1Þ, ðNP2Þ0, but not (NP2Þ. For any

l040, there exists a latent model ðb;F eð: jx; zÞÞ such that
(i)
 ðb;F eð: jx; zÞÞ satisfies ðL1Þ; ðL3Þ and generates Prðy ¼ 1 j v;x; zÞ through (LV).

(ii)
 ðb� b0Þ

0
ðb� b0ÞX l0,

where b0 is the value associated with the moment condition Eðz0xÞ:b0 ¼ Eðz0 ~yÞ.
Proof. See Appendix B.1.

To probe the meaning of Proposition 4, let us interpret xbþ e as the willingness to pay
for an object, v as (minus) the unit price of this object and y as the decision to buy it. When
the support of v is not large, the most extreme values of the willingness to pay xbþ e are
such that we cannot observe prices ð�vÞ which separate individuals whose willingness to
pay is larger than the price (they buy the object) from those whose willingness to pay is
smaller (they do not buy). This is the reason why the tails of the distribution of xbþ e are
not identified and Proposition 4 shows that without additional assumptions on these tails,
b is not identified.

In the remainder of this section, we explore an alternative route for restoring
identification by the way of an additional assumption on the tails of the distribution of
e (i.e., e in BðxÞÞ.
3.2. Generalizing the special-regressor estimator

It should be noted that the set BðxÞ is the union of two subsets, BFðxÞ ¼ fe :
eþ vH þ xbo0g and BSðxÞ ¼ fe : eþ vL þ xb40g. An individual in BFðxÞ always responds
y ¼ 0, even when �v is minimum ð�vH Þ. Symmetrically, an individual in BSðxÞ always
responds y ¼ 1, even when �v is maximum ð�vLÞ. The set BFðxÞ may be interpreted as the
subset of certain failure and, BSðxÞ, the subset of certain success. By construction, the data
do not provide any information on the distribution of the propensities of success in BFðxÞ

and BSðxÞ. The next proposition shows that identification is restored provided that some
balance may be assumed between these two distributions.
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Proposition 5. Assume vHoþ1, vL4�1 and consider Prðy ¼ 1 j v; x; zÞ satisfying

ðNP:1Þ and ðNP:20Þ. Let S 	 Rp be the set of parameters b such that there exists a latent

model (b;F eð: jx; zÞÞ satisfying ðL:1Þ, ðL:3Þ and generating G through (LV). S is reduced to a

singleton and Eðz0xÞ:b ¼ Eðz0 ~yÞ if and only if

Eðz0y
vH
1fy
vH

40gÞ ¼ Eðz0y
vL
1fy
vL

40gÞ, (5)

where y
vL
¼ ðxbþ vL þ eÞ is the propensity of success for individuals with the smallest v and

where y
vH
¼ �ðxbþ vH þ eÞ the propensity of failure for individuals with the largest v.

Under ðL:1Þ, ðL:3Þ and (5) the moment condition (Eðz0xÞ:b ¼ Eðz0 ~yÞÞ provides exact

identification of b.

Proof. See Appendix B.2.

One of the simplest assumptions we can think of which implies this condition, is that
propensities of success y
vL

within the certain-success subset BSðxÞ and propensities of
failure y
vH

within the certain-failure subset BFðxÞ are identically distributed. If this
condition is valid, the special-regressor estimator is unbiased. Alternatively, it is always
possible to choose conditional distributions for y
vH

and y
vL
when they are positive, such

that Eq. (5) is satisfied. It is however impossible to tell from the data whether symmetry of
the tails or an alternative restriction verifying (5) is valid. All restrictions on the
distribution of e satisfying (5) are observationally equivalent and all lead to the exact
identification of b.
If either vH or vL is infinite,8 condition (5) cannot be satisfied. Let vH ¼ þ1 (say), then

the absence of bias means that Eðz0y
vL
1fy
vL

40gÞ should be set to zero which is impossible
since Ey
vL

1fy
vL
40g40. Nevertheless as shown in B.2, the bias may affect the intercept

term only.

Proposition 6. Assume vH ¼ þ1, vL4�1 and consider Prðy ¼ 1 j v; x; zÞ satisfying ðNP:1Þ
and ðNP:20Þ. Let S 	 Rp be the set of parameters b such that there exists a latent model

(b;F eð: jx; zÞÞ satisfying ðL:1Þ, ðL:3Þ and generating Prðy ¼ 1 j v;x; zÞ through (LV) and let

S1 ¼ fðb2; . . . ; bpÞ 2 Rp�1 s:t b1 2 R; ðb1; . . . ;bpÞ 2 Bg where b1 is the intercept coefficient.
S1 is reduced to a singleton if there exists a constant a independent from z such that

Eðy
vL
1fy
vL

40g j zÞ ¼ a, (6)

where y
vL
¼ ðxbþ vL þ eÞ represents the propensity of success for individuals with the lowest

possible v. Under ðL:1Þ, ðL:3Þ and (5) the moment condition (Eðz0xÞ:b ¼ Eðz0 ~yÞÞ provides exact

identification of b apart from the intercept coefficient.

Proof. See Appendix B.2.

The long version of this paper (Magnac and Maurin, 2003) reports Monte-Carlo
experiments which show that the estimator developed in this sub-section (i.e., when ðL:2Þ is
not satisfied) performs quite well in medium-sized samples.
8But not both. If both vH and vL are infinite, we are back to the case described as restricted support (!),

condition ðL:2Þ. Theorem 3 applies.
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4. Information and asymptotic properties

Identification is not the only concern when choosing among different estimation
methods, information is as well. In this section, we establish the semi-parametric efficiency
bound of regular estimators of parameter b under partial-independence and uncorrelated
instruments. The bound is valid regardless of whether the support of v is large or not,
provided the regularity conditions ðRÞ hold true.

Before moving on to the proof of these results, it should be noted that they correspond
to a different setting and are different from the seminal results in Cosslett (1987).
Specifically, he assumes that the error terms have a zero median and are independent of the
regressors. Under these assumptions, he derives the semi-parametric efficiency bound of
the parameters, except the intercept, which cannot be estimated at a root-n rate. As we use
a moment condition instead of a median condition on the error term, a root-n consistency
result for all estimators can be obtained.

In our set-up, the only identifying restriction is given by the moment (1) and one possible
source of difficulty comes from the relationship between the unknown non-parametric
component of ey (i.e., f ðv jx; zÞ ) and the density function with respect to which the moment
restriction (i.e., Eðz0½ ~y� xb�Þ ¼ 0Þ is defined. Given this relationship, the general
framework investigated by Chamberlain (1992) needs to be amended and the semi-
parametric efficiency of the estimators has to be checked by hand.

The special-regressor estimator proposed by Lewbel (2000) is constructed by using the
empirical counterparts of the moments in Eq. (1). Under regularity conditions provided by
Lewbel (2000), this estimator is root-n consistent and asymptotically normal. Our
derivation of the efficiency bound shows that it is not possible to construct an estimator
which is more efficient than the special-regressor estimator under assumptions ðL:1Þ, ðL:3Þ
and a large or restricted support assumption. The specific moment estimator of b proposed
by Lewbel is semi-parametrically efficient.

In the large-support case, the regularity conditions under which the special-regressor
estimator is root-n consistent, and asymptotically normal, are given in Lewbel (2000),
Appendix B, Conditions B1–B6 and Condition B7 or B70 depending on whether the
support of e is bounded. It is easy to check that Conditions B1–B6 and Condition
B70 remain applicable9 when the large-support assumption does not hold and that—
under these conditions—the proof of root-n consistency and asymptotic normality still
holds true too. In particular, Condition B7’ imposes conditions either on the rate
at which Prðy ¼ 1 j v;x; zÞ tends to 0 or 1 when j v j ! 1 or on the support of v

which are easy to satisfy when the large-support assumption does not hold true any
more.10

In the remainder of this section, we establish the efficiency bound. Then, we show that it
is more efficient to use an estimate of the conditional density function when constructing ~y
rather than the true value of the density when the latter is known.
9In contrast, condition (B7) is not applicable when ðNP2Þ does not hold true. As a matter of fact, it assumes that

the support of v is large.
10Condition B7’ ensures that asymptotic trimming leads to an asymptotically equivalent estimator (see also

Lewbel, 1998, Appendix B). As the proof of asymptotic properties is only a little more than the original we do not

repeat it here.
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4.1. The semiparametric efficiency bound

The estimate is based on the unconditional moment conditions:

E½mðy; v; x; z; b0Þ� ¼ 0, (7)

where the function of interest is

mðy; v; x; z; bÞ ¼ z0
y� 1ðv40Þ

f ðv jx; zÞ
� xb

� �
¼ z0½ ~y� xb�.

From regularity conditions ðR:i � vÞ,

E½mm0� ¼ O0

is of full rank, q. It is because E½mm0� ¼ Eðz0z:E½ð ~y� xbÞ2 j z�Þ and because E½ð ~y�
xbÞ2 j z�a0 on a set of positive measure F x;z.
Observe that the moment conditions are linear. If f ðv jx; zÞ were known, the semi-

parametric efficiency bound for estimating solutions of unconditional moment restrictions
would apply (Chamberlain, 1987). The GMM efficiency bound would be

ðEðx0zÞO�10 Eðz0xÞÞ�1,

and the efficient estimate would then be obtained as usual. In our case, however, the
density f ðv jx; zÞ is unknown. Results reported by Chamberlain (1992) cannot be directly
applied because the unknown non-parametric component is also a density function with
respect to which the unconditional moment restriction is taken.
For simplicity, we shall consider an estimation in two steps. First, we begin with the

estimation of parameter p0 ¼ Eðz0xÞ:b0. Second we estimate parameter b0 using minimum
distance and the first-step estimate of p0. In the first step, the unconditional moment
restriction that we consider is

Eð ~gðy; v;x; z; p0ÞÞ ¼ Eðz0 ~y� p0Þ ¼ 0. (8)

The efficiency bound and variance–covariance matrices for b0 are then derived as in Newey
and McFadden (1994), for instance. Namely, if Vp is the variance–covariance matrix of
whatever estimate of p0 then, under the usual regularity conditions, the variance–covar-
iance matrix of the corresponding estimate of b0 is given by

ðEðx0zÞ:V�1p :Eðz0xÞÞ�1.

The bound for Vp is described by the following result.

Proposition 7. The semi-parametric efficiency bound for estimating p0 is

Eðz0ð ~y� Eð ~y j v;x; zÞ þ Eð ~y jx; zÞ � xb0Þ
2zÞ.

Proof. See Appendix C.1.

For the paper to be self-contained, Appendix C.2 provides the variance–covariance of
Lewbel’s estimator (as derived by Lewbel, 2000) and proves that it actually attains the
previous bound. Under (L:1–L:3), it is not possible to be more efficient than Lewbel’s
estimator.
It should be emphasized that the special-regressor estimator remains efficient when the

large-support hypothesis ðL:2Þ is replaced by a symmetry assumption such as (5). As a
matter of fact, the derivation of the semi-parametric efficiency bound and of the
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variance–covariance of estimator does not depend on the specific assumptions made on
bounds. Whether conditions ðL:2Þ or ðNP:2Þ are satisfied or not, the same properties apply
to Lewbel’s estimate. It is consistent and semi-parametrically efficient under the conditions
of Propositions 5 or 6.

If one is ready to lose some efficiency then—in the asymmetric case described by
Proposition 6—one can always use the symmetrical trimming proposed by Powell (1986).

4.2. Plugging-in the true or estimated conditional density?

In this section, we assume that the conditional density f ðv jx; zÞ is known. It may
correspond to the case where v is under experimental control or the case where one has
access to additional external information on the distribution of v (through census
information for instance). In such a case, we can consider two different transformations,
~y ¼ ðy� Iðv40ÞÞ=f ðv jx; zÞ or ðy� Iðv40ÞÞ=f̂ ðv jx; zÞ when constructing the linear regres-
sion that leads to the estimation of b. Here, f ðv jx; zÞ is the true distribution and bf ðv jx; zÞ is
an estimate of f ðv jx; zÞ. It was conjectured by Lewbel (2000) (and confirmed by Monte-
Carlo experiments) that the estimate of b obtained with ey and the true value of the density
actually has a larger asymptotic variance than the estimate obtained with ŷ and the
estimated value of the density. We now offer a proof for this conjecture:

Theorem 8. The estimate of p0 defined by the unconditional moment condition (8) (i.e.,
Eðz0 ~y� p0Þ ¼ 0) has a strictly smaller variance when the estimated bf ðv jx; zÞ is used to

transform the dependent variable than when the true density is used.

Proof. See Appendix C.3.

Replacing the nuisance parameter—the conditional density—by an estimate is more
efficient than replacing it by its true value. Hirano et al. (2003) report similar results in the
context of treatment models where the nuisance parameter is the inverse of a propensity
score, in a set of moment restrictions. They show that using an estimate of the score leads
to more efficient estimation of treatment parameters than using the true score. They
interpret the estimator with the estimated score as an empirical likelihood estimator where
the information about the nuisance function has been efficiently incorporated. Theorem 5
can also be understood by using broadly similar arguments to those presented by Crépon
et al. (1998). Consider two sets of moment conditions. The first set depends on the
parameters of interest and the nuisance parameters while the second set of moment
conditions depend on the nuisance parameters only. The efficient GMM estimates can be
derived from the first set of conditions when the nuisance parameters are replaced by their
estimated values using the second set of conditions. In contrast, GMM estimates are not
generically efficient when the parameters are replaced by their true values.

5. Extensions

Lewbel (1998, 2000, 2003) uses the special-regressor hypothesis to estimate the structural
parameters of other linear latent variable models, y ¼ Lðxbþ �Þ, such as the ordered
discrete choice model with constant thresholds or the censored regression model. One
obvious issue is whether the equivalence results given by Theorem 3 can be extended to
these models. In some interesting cases the answer is positive. In other cases, the special
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regressor setting imposes testable restrictions on the set of statistical phenomena that are
generated by the latent structure.
To illustrate the generalization of Theorem 3, we consider the most straightforward

extension of binary responses which are ordered choice models. Assume that the support
of y is now Sy ¼ f0; 1; . . . ;Kg (KX1Þ. We consider two definitions of ordered choice
models and discuss each in turn. In the first one, each individual is defined by an ordered
set of propensities (i.e., y
1; :; y



K Þ and his/her response (y 2 f0; 1; . . . ;KgÞ depends on how

propensities compare with a given cost variable v. In the second model, each individual
is defined by one specific propensity y
 and his/her response depends on how this
propensity compares with an ordered set of thresholds akðvÞ. A straightforward extension
of Theorem 3 only holds in the first case, whereas structural parameters are overidentified
in the second model.

5.1. Ordered choices: first model

Consider the following definition for latent ordered choice models.

Definition 9. Latent ordered discrete choice models are characterized by a set of ordered
latent random variables fy
1; :; y



Kg where y
k4y
kþ1. By convention define y
Kþ1 ¼ �1. The

observable model is given by

y ¼
XK

k¼1

kIðvþ y
k40; vþ y
kþ1p0Þ

¼
XK

k¼1

kIð�y
kovp� y
kþ1Þ. ðLV1Þ

We consider linear latent models such as

8k ¼ 1; :;K y
k ¼ xbk þ ek,

where every random shock e1; . . . ; eK satisfy (L:1–L:3).
This model is a straightforward generalization of (LV). When K ¼ 1, the two models

coincide. Such an ordered choice model may typically be used for analysing consumer
behaviour. Suppose that the observed variable y records the number of units of a good that
is bought by consumer i when the offered unit price is ð�vÞ. The latent variables, y
k, stand
for the willingness to pay for an additional unit of this good when the number of units
bought is k � 1. If marginal utility is decreasing, then the marginal-unit willingness to pay
is decreasing, which justifies the ordered choice setting. The fact that an entire array of
unobserved components affect willingness to pay is due to individual differences in the
relation between marginal utility and quantity purchased.
One of the interesting features of the setting given by (LV1) is that it is equivalent to a

system of K binary latent models given by

yk ¼ Ið�y
kovÞ. (LV1k)

For instance, y1, is an indicator of purchase (any quantity), y2 is an indicator of 2 or more
units purchased and so on yk is an indicator showing that k or more units were purchased:

yk ¼ IðyXkÞ.
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Reciprocally:

y ¼
XK

k¼1

yk.

Let M

OC be the set of latent ordered discrete choice models where elements

fðbk;F ek
ð: jx; zÞÞ; k ¼ 1; . . . ;Kg satisfy partial independence, support and moment condi-

tions (L:1–L:3) and the additional inequality restrictions across alternatives:

y
k ¼ xbk þ ek4xbkþ1 þ ekþ1 ¼ y
kþ1. (9)

These inequalities translate into restrictions on the joint distribution of ðek; ekþ1Þ. Let
Okðx; zÞ be the support of ek as defined in the first section. The support of ðe1; :; eK Þ is
therefore:

Oðb; x; zÞ ¼ fðe1; . . . ; eK Þ 2 O1 � � � � � OK j 8k; xbk þ ek4xbkþ1 þ ekþ1g.

The consequences in terms of non-parametric predictions are now straightforward. They
consist of ðNP:1Þ and ðNP:2Þ for any choice k. Inequalities (9) in the latent model translate
into

yk ¼ 1f�ðxbk þ ekÞovgX1f�ðxbkþ1 þ ekþ1Þovg ¼ ykþ1

with some strict inequalities for a positive mass of v. Thus

Eðyk j v; x; zÞ ¼ Gkðv;x; zÞ4Gkþ1ðv;x; zÞ ¼ Eðykþ1 j v;x; zÞ,

which is a sensible assumption in most cases. For instance, the probability of buying more
than k units is decreasing with k. These inequalities do not translate into restrictions on the
marginal distributions of ek but only on the joint distribution of ðek; ekþ1Þ and the latter is
underidentified. Only the marginal distributions are identified.

We can now summarize these results. Let the set M

LOC of latent ordered models be

given by parameters ðb1; :; bK Þ 2 RK , distribution functions ðf 1ðe1 jx; zÞ; :; f K ðeK jx; zÞÞ
2 DK , a family of set Oðb;x; zÞ � RK , and the transformation (LV1) such that they verify
(L:1–L:3). Let the set MNPOC given by:

MNPOC ¼MNPðy1Þ � � � � �MNPðyK Þ

that satisfy ðNP:1Þ and ðNP:2Þ and where 8k;Gkðv; x; zÞ4Gkþ1ðv;x; zÞ. Then:

Theorem 10. M

LOC is one-to-one with MNPOC.

5.2. Ordered choices: second model

Let us now consider the following semi-parametric latent model which is defined with
respect to the unobserved heterogeneity component:

y ¼
XK

k¼1

kIðakðvÞoxbþ �pakþ1ðvÞÞ, (LV2)

where the thresholds akðvÞ, k ¼ 1; . . . ;K þ 1, satisfy,

a1ðvÞ ¼ �vpa2ðvÞp � � �pakðvÞpaKþ1ðvÞ ¼ þ1, (10)

while � satisfies ðL:1Þ–ðL:3Þ.
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This model is also a direct generalization of (LV). When K ¼ 1, the two models coincide.
xbþ � may be interpreted as a propensity to respond as in (LV), but now the response has
several possible levels of intensity. The akðvÞ thresholds may be interpreted as the cost of
responding with intensity k. The only structural assumption about these costs is that they
increase with the intensity of the response.
Such a model may describe, for instance, the performance of young children when

starting school, where y
 represents their (latent) schooling ability (plausibly dependent on
family inputs) and the akðvÞ thresholds represent the set of thresholds (plausibly dependent
on v being the birthdate within the year) imposed by the educational system for deciding
who should be held back (y ¼ 0), who should be on time (y ¼ 1) and who should be ahead
(y ¼ 2) at school.11

Let M

LOC2 be the set of latent ordered discrete choice models where elements ðb,

F eð: jx; zÞ; akðvÞ; k ¼ 2; . . . ;KÞ satisfy independence, support and moment conditions
(L:1–L:3). Consider also a statistical model F ðy j v;x; zÞ on Sy such that PrðyiX1 j v; x; zÞ
satisfy conditions (NP:1–NP:2) and assume that there exists a latent ordered choice model
ðb, F eð: jx; zÞ; akðvÞ; k ¼ 2; . . . ;KÞ in M


LOC2 where the image is F ðy j v;x; zÞ.
Let us denote G0ðv;x; zÞ ¼ Pðy ¼ 0 j v;x; zÞ. By definition, �G0 belongs to M


NP. Thus,
using Theorem 3, we can exactly identify the parameter of interest b and the distribution of
the error term e. In particular, we necessarily have f eð: jx; zÞ ¼ ðqG0=qvÞð�ðxbþ eÞ;x; zÞ.
For any kX1, define now Gkðv;x; zÞ ¼ Pðypk j v;x; zÞ. We have

Gkðv;x; zÞ ¼

Z �xbþakðvÞ

�1

dF ðe jx; zÞ ¼
Z �xbþakðvÞ

�1

�qG0

qv
ð�ðxbþ eÞ;x; zÞde

¼ G0ð�akðvÞ;x; zÞ.

It therefore yields

akðvÞ ¼ �G�10 ð:; x; zÞ � Gkðv; x; zÞ.

Thus F ðy j v; x; zÞ is the image of an element ofM

LOC2 only if G�10 ð:; x; zÞ � Gkðv;x; zÞ do not

depend on x and z. Put differently, a monotone ordered discrete phenomena can be
analysed as a structural ordered choice model that satisfies the partial independence
hypothesis only if G�10 � Gk does not depend on x and z, which is a testable assumption.
Note finally that the inequalities described by (10) translate into the same inequalities in
the functions Gk that we had in the previous subsection and which are adapted to the
present setting. They do not affect our argument.
Therefore, the ordered discrete choice models with fixed thresholds (i.e., akðvÞ � a0ðvÞ ¼

gkÞ are not one-to-one with the monotone discrete models. The partial independence
hypothesis makes it possible to identify very easily the structural parameters that
characterize these ordered choice models, but this assumption also implies (testable)
restrictions on the set of discrete monotone phenomena which can be analysed with such
models.
11Maurin (2002) uses the binary approach to estimate the probability to be held back using v ¼ day-of-birth

within the year as a special regressor and interpreting xbþ � as schooling abilities. �a2ðvÞ can be interpreted as the

ability threshold (defined by the educational system) above which children can be ahead at school.
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6. Conclusion

The first contribution of this paper is to characterize the conditions under which the
identifying assumptions proposed by Lewbel (2000) are justified: Eðy j v;xÞ is monotone in
v and varies from 0 to 1 when v varies over its support. Second, it is shown that the
uncorrelated-error, partial independence and large-support assumptions lead to the exact
identification of the structural parameters of the binary response model. We also prove
that the large-support assumption—which might be unadapted in some instances—can be
replaced by an alternative credible restriction which is the conditional symmetry of the tails
of the error distribution. Furthermore, we show that Lewbel’s moment estimator attains
the semi-parametric efficiency bound in the corresponding class of latent models. We
propose an extension to ordered choice models. All in all, Lewbel’s moment estimator is
shown to be consistent in a fairly wide class of binary choice models. This class includes all
monotone binary data where the probability of success varies in an interval which is strictly
included in ½0; 1�.

It would be interesting to extend our results to other settings, such as the analyses of
truncated regressions (Khan and Lewbel, 2003), treatment effects (Lewbel, 2003) or panel
data (Honoré and Lewbel, 2002). We are currently exploring another route by relaxing the
assumption that partial independence holds with respect to a regressor which is continuous
(Magnac and Maurin, 2004). We consider that v is discrete or has been made discrete and
show that bounds of a convex set containing b are identified.
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Appendix A. Proofs of Section 2

A.1. Proof of Lemma 1

Write:

Prðyi ¼ 1 j v; x; zÞ ¼

Z
xbþvþ�40;e2Oeðx;zÞ

dF eð� jx; zÞ

As dF eð� jx; zÞX0 and F e is absolutely continuous, the first conclusion follows.
Second, for almost any ðx; zÞ, the support of �xb� e is a subset of �vL; vH ½ that we

denote �vlðx; zÞ; vhðx; zÞ½. Suppose first that both bounds are finite. We have for all
e 2 Oeðx; zÞ:

vLpvlðx; zÞo� ðxbþ eÞovhðx; zÞpvH



ARTICLE IN PRESS
T. Magnac, E. Maurin / Journal of Econometrics 139 (2007) 76–10494
and therefore for all e 2 Oeðx; zÞ:

vlðx; zÞ þ xbþ eo0; vhðx; zÞ þ xbþ e40

The second conclusion follows. If bounds are infinite then the expressions in the lemma
should be replaced by suitable limits.
A.2. Proof of Lemma 2

Consider Gðv;x; zÞ ¼ Prðy ¼ 1 j v;x; zÞ satisfying ðNP:1Þ and ðNP:2Þ. According to the
support condition ðNP:2Þ, there exists (a.e. F x;z) two values vlðx; zÞ and vhðx; zÞ in �vL; vH ½

such that Gðvlðx; zÞ;x; zÞ ¼ 0 and Gðvhðx; zÞ; x; zÞ ¼ 1. Assume that there exists
ðb;F eð: jx; zÞÞ in M


L such that Gðv;x; zÞ is its image through the transformation ðLV).
Define the support of the random variable e as

Oeðx; zÞ ¼� � ðvhðx; zÞ þ xbÞ;�ðvlðx; zÞ þ xbÞ½ (11)

which is a subset of � � ðvH þ xbÞ;�ðvL þ xbÞ½ By definition of (LV), ðb;F eð: jx; zÞÞ satisfies,

Gðv;x; zÞ ¼

Z
vþxbþe40;e2Oeðx;zÞ

f eðe jx; zÞde ¼
Z �ðvlþxbÞ

�ðvþxbÞ
f eðe jx; zÞde

¼ 1� F eð�ðvþ xbÞ jx; zÞ,

which implies for any e 2 Oeðx; zÞ that

f eðe jx; zÞ ¼
qG

qv
ð�ðxbþ eÞ;x; zÞ. (12)

The qG=qv function is defined almost everywhere (F v) since (a) by the monotonicity
assumption ðNP1Þ, Gðv;x; zÞ is absolutely continuous in v 2�vL; vH ½ (Billingsley, 1995) and
(b) v varies continuously (R:iii, R:ivÞ.
Furthermore, condition ðL:3Þ implies:

0 ¼ Eðz0eÞ

¼ Ex;z z0
Z

ef eðe jx; zÞde
� �

¼ � Ex;z z0
Z
ðxbþ vÞ

qG

qv
dv

� �
¼ � Eðz0xÞb� Ex;z z0

Z
v
qG

qv
dv

� �
, ð13Þ

where the notation Ex;z means that the expectation is taken with respect to the subscript
variables only (if there is some ambiguity) and the integrals are taken on the support of
each variable. Because of R:iii, Eðz0xÞ is of rank equal to the dimension of b. The previous
equation therefore uniquely defines b in the usual sense when some linear restrictions are
overidentifying (rigorously defined in R:vÞ.
Thus if ðb;F eð: jx; zÞÞ exists, it is defined by (11)–(13). Reciprocally, consider
ðb;F eð: jx; zÞÞ in M


L which satisfies (11)–(13). Its image through (LV) is Gðv; x; zÞ.
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Finally, we haveZ
v
qG

qv
dv ¼

Z vH

0

v
qG

qv
dvþ

Z 0

vL

v
qG

qv
dv

¼ ½vðGðv; x; zÞ � 1Þ�vH

0 �

Z vH

0

ðGðv; x; zÞ � 1Þdv

þ ½vGðv; x; zÞ�0vL
�

Z 0

vL

Gðv;x; zÞdv

¼ �

Z vH

vL

ðGðv;x; zÞ � 1ðv40ÞÞdv

¼ �

Z vH

vL

ðEðy j v;x; zÞ � 1ðv40ÞÞdv

¼ �

Z vH

vL

Eð ~y j v;x; zÞ:dF vðv jx; zÞ ¼ �Eð ~y jx; zÞ

and therefore (also Lewbel, 2000, p. 115):

Ex;z z0
Z

v
qG

qv
dv

� �
¼ �Eðz0eyÞ

which completes the proof.
Appendix B. Proofs of Section 3

B.1. Proposition 4

Consider Gðv;x; zÞ ¼ Prðy ¼ 1 j v; x; zÞ satisfying NP1, NP20, but not NP2. The purpose
is to show that G may be generated by a latent model with an arbitrarily large b.

Fix b. Chose F eð: jx; zÞ satisfying partial independence and (3) and (4). By construction,
the latent model ðb;F eð: jx; zÞÞ satisfies ðL:1Þ and generates Gðv;x; zÞ through (LV). The
only remaining restriction on b is given by the moment condition ðL:3Þ:

0 ¼ Eðz0eÞ ¼ Ex;z z0
Z

edF ðe jx; zÞ
� �

¼ E z0
Z
e2BðxÞ

edF ðe jx; zÞ
� �

þ E z0
Z �ðvLþxbÞ

�ðvHþxbÞ
edF ðe jx; zÞ

� �
ð14Þ

Thus, using the fact that f eðe jx; zÞ ¼ ðqG=qvÞð�e� xbÞ for e 2� � ðvH þ xbÞ;�ðvL þ xbÞ½
we have

0 ¼ E z0
Z
e2BðxÞ

edF ðe jx; zÞ
� �

� E z0
Z vH

vL

ðxbþ vÞ
qG

qv
dv

� �
¼ E z0e1fe 2 BðxÞgð Þ � E z0xb

Z vH

vL

qG

qv
dv

� �
� E z0

Z vH

vL

v
qG

qv
dv

� �
. ð15Þ
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The last term can be expressed as in the proof of Lemma A.2:Z vH

vL

v
qG

qv
dv ¼

Z vH

0

v
qG

qv
dvþ

Z 0

vL

v
qG

qv
dv

¼ ½vðGðv; x; zÞ � 1Þ�vH

0 �

Z vH

0

ðGðv; x; zÞ � 1Þdv

þ ½vGðv; x; zÞ�0vL
�

Z 0

vL

Gðv;x; zÞdv

¼ � bðvH ; vL; x; zÞ þ

Z vH

vL

ðGðv;x; zÞ � 1ðv40ÞÞdv

� �
¼ � ðbðvH ; vL;x; zÞ þ Eð ~y jx; zÞÞ

where

bðvH ; vL;x; zÞ ¼ � ð½vðGðv;x; zÞ � 1Þ�vH

0 þþ½vGðv;x; zÞ�0vL
Þ

¼ vH ð1� GðvH ;x; zÞÞ þ vLGðvL; x; zÞ

is a function of conditional probabilities at the bounds (and can be infinite). Note that it is
equal to zero when GðvH ;x; zÞ ¼ 1 and GðvL; x; zÞ ¼ 0 (i.e., under NP:2Þ.
The moment condition given by Eq. (14) can be written as:

0 ¼ Eðz0e1fe 2 BðxÞgÞ � Eðz0xfGðvH ;x; zÞ � GðvL; x; zÞgÞb

þ Eðz0bðvH ; vL;x; zÞÞ þ Eðz0 ~yÞ

¼ Eðz0e1fe 2 BðxÞgÞ þ Eðz0xf1� GðvH ; x; zÞ þ GðvL;x; zÞgÞb

þ Eðz0bðvH ; vL;x; zÞÞ

� Eðz0xÞbþ Eðz0 ~yÞ. ð16Þ

It should be noted that if the support condition ðNP:2Þ were true, we would have
GðvH ;x; zÞ ¼ 1, GðvL;x; zÞ ¼ 0 (therefore bð:Þ ¼ 0) and BðxÞ ¼ ;. The last line of condition
(16) would give back Lewbel’s moment condition (i.e., Eðz0xÞb ¼ Eðz0 ~yÞ).
Given that ðNP:2Þ does not hold, either vL or vH are finite. Suppose that vHo1 so that
�ðvH þ xbÞ � t0ðx; zÞ belongs to BðxÞ for any measurable function t0ðx; zÞXZ40. Choose
the conditional distribution of e in BðxÞ such that there is a mass 1� GðvH ;x; zÞ in a small
neighbourhood of �ðvH þ xbÞ � t0ðx; zÞ and a mass 1� GðvL;x; zÞ in a small neighbour-
hood of �ðvL þ xbÞ included in BðxÞ (possibly a mass 0 at �1 because of ðNP:20Þ). As the
neighbourhoods can be chosen arbitrarily small, we can consider that all the mass is
concentrated at two points in BðxÞ, �ðvH þ xbÞ � t0ðx; zÞ and �ðvL þ xbÞ. Using this
specific distribution of e, (16) may be rewritten, after some manipulation,

Eðz0xÞðb� b0Þ ¼ �Eðz
0t0ðx; zÞÞ,

where b0 is the value of the parameter associated with the moment condition
Eðz0xÞ:b0 ¼ Eðz0 ~yÞ.
As Eðz0xÞ is full rank (R:ii) then, for all l0, there exists t0ðx; zÞ such that ðb� b0Þ

0

ðb� b0ÞXl0 which concludes the proof.
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B.2. Propositions 5 and 6

Eq. (16) proves that the special-regressor estimator is biased except if:

Eðz0e1fe 2 BðxÞgÞ þ Eðz0xf1� GðvH ; x; zÞ þ GðvL;x; zÞgÞbþ Eðz0bðvH ; vL; x; zÞÞ ¼ 0

()

Eðz0e1feo� ðvH þ xbÞgÞ þ Eðz0e1fe4� ðvL þ xbÞgÞ

Eðz0ðxbþ vH Þf1� GðvH ;x; zÞgÞ þ Eðz0ðxbþ vLÞfGðvL;x; zÞgÞ ¼ 0

()

Eðz0ðxbþ vH þ eÞ1feo� ðvH þ xbÞgÞ þ Eðz0ðxbþ vL þ eÞ1fe4� ðvL þ xbÞgÞ ¼ 0,

which is equivalent to:

�Eðz0y
vH
1fy
vH

40gÞ þ Eðz0y
vL
1fy
vL

40gÞ ¼ 0,

where y
vL
¼ �ðxbþ vH þ eÞ and y
vL

¼ xbþ vL þ e. It proves Proposition 5.
If vH ¼ þ1 and using the support condition ðNP:20Þ, the bias is characterized by the

quantity:

Eðz0y
vL
1fy
vL

40gÞ.

If the conditional mean is independent of z:

Eðy
vL
1fy
vL

40g j zÞ ¼ a

then the constant only in b is biased.
Appendix C. Proofs of Section 4

C.1. Proof of Proposition 7

C.1.1. Preliminaries

We begin by introducing some notations and by presenting the main result of Severini
and Tripathi (2001). In the following, we will apply this result to derive the efficiency
bound for estimating p0.

Firstly, the density function (with respect to products of Lebesgue and counting
measures) of the random vector w ¼ ðy; v;x; zÞ, as defined by regularity conditions R, is
rewritten as

f ðy; v;x; zÞ ¼ f ðy j v;x; zÞ:f ðv jx; zÞ:f ðx; zÞ

¼ f2
1ðy j v;x; zÞ:c

2
ðv jx; zÞ:f2

2ðx; zÞ.

The ‘‘structural’’ parameter of interest is pðf1;f2;cÞ ¼ Eðz0 ~yÞ. The ‘‘reduced form’’
functionals describing the random variable are f1, f2, c which are assumed to belong to
the following sets:

F1 ¼ ff1 : f0; 1g��vL; vH ½�Sx;z ! R;
X
y¼0;1

f2
1ðy j v; x; zÞ ¼ 1;f2

1ðy j v;x; zÞX0g,
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F2 ¼ f2 2 L2ðSx;zÞ;

Z
Sx;z

f2
2ðx; zÞdx dz ¼ 1; f2

2ðx; zÞ40;

(

f2
2ðx; zÞ is bounded

)
,

C ¼ c 2 L2ð�vL; vH ½Þ;

Z
�vL ;vH ½

c2
ðv jx; zÞdv ¼ 1;c2

ðv jx; zÞ40;

�
c2
ðv jx; zÞ is bounded and continuous

�
,

where all assumptions are derived from the regularity conditions ðR:ii and iiiÞ.
In the remainder, E will denote F1 � F2 �C and lin TðE; ðf0

1;f
0
2;c

0
ÞÞ the space tangent

to E at the true value ðf0
1;f

0
2;c

0
Þ. This tangent space is the smallest linear space which is

closed in the L2-norm and which contains all ð _f1; _f2; _cÞ 2 L2ðF y j v;x;z:Fv j x;z:F x;zÞ that are
tangent to E at ðf0

1;f
0
2;c

0
Þ. A vector _j is said to be tangent to E at j0 ¼ ðf

0
1;f

0
2;c

0
Þ if

there exists a t040 and a curve t�!jt from 0; t0½ � into E which reaches ðf0
1;f

0
2;c

0
Þ at t ¼ 0

and such that _j is the slope of jt at t ¼ 0 (i.e., limt#0 k
jt�j0

t
� _jkL2 ¼ 0Þ.

As shown in Severini and Tripathi (2001), lin TðE; ðf0
1;f

0
2;c

0
ÞÞ is the product of the

following subspaces:

lin TðF1;f
0
1Þ ¼

_f1 2 L2ðf0; 1g��vL; vH ½�Sx;zÞ;
�
X
y¼0;1

f0
1ðy j v;x; zÞ:

_f1 ¼ 0 a.e. �vL; vH ½�Sx;z

)
,

lin TðF2;f
0
2Þ ¼

_f2 2 L2ðSx;zÞ;

Z
Sx;z

f0
2
_f2 dxdz ¼ 0

( )
,

lin TðC;c0
Þ ¼ _c 2 L2ð�vL; vH ½�Sx;zÞ;

Z
�vL;vH ½

cc0 dv ¼ 0 a.e. Sx;z

� �
.

Following Severini and Tripathi (2001), for any ð _f1; _f2; _cÞ and ð _f
0

1;
_f
0

2;
_c
0
Þ elements of the

tangent space, the Fisher information inner product on the tangent space will be denoted
h:; :iF (and the corresponding norm k:kF ) with,

hð _f1; _f2; _cÞ; ð _f
0

1;
_f
0

2;
_c
0
ÞiF ¼ 4

X
y¼0;1

Ex;z;vð
_f1
_f
0

1Þ þ 4Ex;z

Z
�vL;vH ½

_c _c
0
dv

� �
þ 4

Z
Sx;z

_f2
_f
0

2 dxdz

kð _f1; _f2; _cÞk
2
F ¼ hð

_f1; _f2; _cÞ; ð _f1; _f2; _cÞiF .

Since the tangent space is a closed subspace of L2ðF y j v;x;z:F v j x;z:F x;zÞ, the tangent space
with this inner product is a Hilbert space. Hence, the Riesz–Frechet theorem implies that
for any continuous linear functional L on (lin TðE; ðf0

1;f
0
2;c

0
ÞÞ; h:; :iF Þ there exists a unique
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l
 in lin TðE; ðf0
1;f

0
2;c

0
ÞÞ such that for any _l in lin TðE; ðf0

1;f
0
2;c

0
ÞÞ, we have Lð_lÞ ¼ h_l; l
iF .

The l
 vector is called the representer of L.
For any arbitrary c 2 Rq,we will consider r : E! R,

rðf1;f2;cÞ ¼ c0pðf1;f2;cÞ ¼ c0:
X
y¼0;1

Z
�vL;vH ½�Sx;z

z0ðy� 1ðv40ÞÞf2
1f

2
2 dvdxdz. (17)

To simplify the problem, the usual strategy is to first compute the efficiency bound for
estimators of the scalar rðf0

1;f
0
2;c

0
Þ. As c is arbitrary, it is straightforward to deduce the

efficiency bound for estimators of p0.
To implement this technique, the issue is to prove that r is pathwise differentiable at
ðf0

1;f
0
2;c

0
Þ, to prove that the pathwise derivative of rðf1;f2;cÞ at ðf

0
1;f

0
2;c

0
Þ (denoted

rr0) is a continuous linear functional, to find f
 ¼ ðf
1;f


2;c


Þ the representer of rr0 and

to compute kf
kF . Severini and Tripathi (2001) show that the lower bound for the
asymptotic variance of root-n consistent regular estimators of rðf0

1;f
0
2;c

0
Þ is actually

kðf
1;f


2;c


ÞkF , i.e., the Fisher information norm of ðf
1;f



2;c


Þ the representer of rr0.

C.1.2. The representer of rr0 and the efficiency bound

For some t040 let jðtÞ : t�!ðf1t;f2t;ctÞ be a curve from ½0; t0� into E such that jðtÞ
reaches ðf0

1;f
0
2;c

0
Þ when t ¼ 0, and has a tangent vector _j ¼ ð _f1; _f2; _cÞ at ðt ¼ 0Þ. By

definition _j corresponds to the slope of jðtÞ at t ¼ 0 (i.e., kðjðtÞ � jð0ÞÞ=t� _jkL2�!0
when t # 0Þ.

Consider rr0: lin TðE; ðf0
1;f

0
2;c

0
ÞÞ ! R with

rr0ð _f1; _f2; _cÞ ¼ c0
X
y¼0;1

Z
�vL;vH ½�Sx;z

z0ðy� 1ðv40ÞÞ2ð _f1f
0
2 þ

_f2f
0
1Þf

0
1f

0
2 dvdxdz. (18)

By construction rr0 is clearly such that jðrðjðtÞÞ � rðjð0ÞÞÞ=t� rr0ð _jÞj�!0 when t # 0
for any jðtÞ. Hence, r is pathwise differentiable at ðf0

1;f
0
2;c

0
Þ and its derivative is the

linear functional rr0.
We now search for the Riesz–representer of rr0, i.e., the vector ðf
1;f



2;c


Þ in the

tangent space such that, for any ð _f1; _f2; _cÞ in the tangent space.

rr0ð _f1; _f2; _cÞ ¼ hð _f1; _f2; _cÞ; ðf


1;f


2;c


ÞiF .

First, notice that rr0ð _f1; _f2; _cÞ can be rewritten

rr0ð _f1; _f2; _cÞ ¼ 2c0
X
y¼0;1

Z
�vL ;vH ½�Sx;z

z0
ðy� 1ðv40ÞÞ

c2
c2
ðf0

2Þ
2

� �
_f1f

0
1 dv dxdz

þ 2c0
Z

Sx;z

_f2f
0
2

X
y¼0;1

Z
�vL ;vH ½

ðy� 1ðv40ÞÞ

c2
c2
ðf0

1Þ
2

� �
dvdxdz.

Hence, we have,

rr0ð _f1;
_f2;

_cÞ ¼ 2c0
X
y¼0;1

Z
�vL;vH ½�Sx;z

z0½eyc2
ðf0

2Þ
2
�dvdxdz

 !
_f1f

0
1

þ 2c0
Z

Sx;z

X
y¼0;1

Z
�vL;vH ½

z0½eyc2
ðf0

1Þ
2
�dv

 !
_f2f

0
2 dxdz.



ARTICLE IN PRESS
T. Magnac, E. Maurin / Journal of Econometrics 139 (2007) 76–104100
Comparing this expression with the expression of hð _f1;
_f2;

_cÞ; ðf
1;f


2;c


ÞiF and using the

fact that
R

Sx;z
f0
2
_f2 dxdz ¼ 0 and

P
y¼0;1f

0
1
_f1 ¼ 0 for any _f1 and

_f2 in the tangent space,

we can see that any ðf
1;f


2;c


Þ such that

f
1ðy j v; x; zÞ ¼
1
2

c0z0 ~yf0
1 þ A1ðx; v; zÞf

0
1,

f
2ðx; zÞ ¼
1
2

c0:ðz0Eð ~y jx; zÞf0
2 þ A2f

0
2.

c
ðv jx; zÞ ¼ 0,

for some function A1ðx; v; zÞ and some intercept A2, is such that

hð _f1; _f2; _cÞ; ðf


1;f


2;c


ÞiF ¼ rr0ð _f1; _f2; _cÞ.

To determine A1ðx; v; zÞ and A2, we impose that ðf
1;f


2;c


Þ belongs to the tangent space,

i.e.,
R

Sx;z
f0
2f


2 dxdz ¼ 0 and

P
y¼0;1f

0
1ðy j v; x; zÞ:f



1 ¼ 0. These two imply,

A1ðx; v; zÞ ¼ �1
2

c0Eðz0 ~y j v; x; zÞ and A2 ¼ �
1
2

c0:Eðz0 ~yÞ ¼ �1
2

c0:p0.

Thus, we necessarily have

f
1ðy j v; x; zÞ ¼
1
2 c0z0ð ~y� Eð ~y j v; x; zÞÞf0

1,

f
2ðx; zÞ ¼
1
2

c0:ðz0Eð ~y jx; zÞ � p0Þf
0
2.

c
ðv jx; zÞ ¼ 0.

We have just found a vector ðf
1;f


2;c


Þ in the tangent space which satisfies

rr0ð _f1;
_f2;

_cÞ ¼ hð _f1;
_f2;

_cÞ; ðf
1;f


2;c


ÞiF for any ð _f1;

_f2;
_cÞ in the tangent space. Using

again the Riesz–Frechet theorem, this result proves that the linear operator rr0 is
continuous and that ðf
1;f



2;c


Þ is its representer.

As shown in Severini and Tripathi (2001), the efficiency bound is thus

kf
21 kF þ kf

2
2 kF ¼ c0Eðz0ð ~y� Eð ~y j v;x; zÞÞ2zÞc

þ c0Eððz0Eð ~y jx; zÞ � p0Þðz0Eð ~y jx; zÞ � p0Þ
0
Þc

¼ c0Eðz0ð ~y� Eð ~y j v;x; zÞÞ2zÞc

þ c0Eðz0ðEð ~y jx; zÞ � xb0Þ
2zÞ:c

¼ c0Eðz0ð ~y� Eð ~y j v;x; zÞ þ Eð ~y jx; zÞ � xb0Þ
2zÞc,

where we used that p0 ¼ Eðz0xÞ:b0. Thus, the semi-parametric efficiency bound at p0 is

Eðz0ð ~y� Eð ~y j v;x; zÞ þ Eð ~y jx; zÞ � xb0Þ
2zÞ.

C.2. The variance– covariance of Lewbel estimate

As in Newey (1994), consider the estimation of the parameter of interest pt ¼ Eðz0 ~yÞ on
any differentiable path indexed by t and where t ¼ 0 gives p0. For simplicity, denote u the
functionally independent representation of ðx; zÞ:

pt ¼

Z
z0

y� 1fv40g

f tðv j uÞ
f tðe; v; uÞdedvdu.
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Therefore

pt ¼

Z
z0ðy� 1fv40gÞf tðe j v; uÞf tðuÞdedvdu.

Under regularity conditions given by Newey (1994), formal differentiation with respect
to t yields:

qpt

qt

				
t¼0

¼

Z
z0ðy� 1fv40gÞ

q
qt
ðf tðe j v;x; zÞf tðx; zÞÞdedvdu

¼

Z
z0ðy� 1fv40gÞ

q
qt

ln f tðe j v; uÞ þ
q
qt

ln f tðuÞ

� �
f 0ðe j v; uÞf 0ðuÞdedvdu,

qpt

qt

				
t¼0

¼ E z0
y� 1fv40g

f 0ðv j uÞ
:

q
qt

ln f tðe j v; uÞ þ
q
qt

ln f tðuÞ

� �� �
¼ E z0 ~y:

q
qt

ln f tðe; v; uÞ �
q
qt

ln f tðv; uÞ þ
q
qt

ln f tðuÞ

� �� �
¼ E z0 ~y:Sðe; v; uÞ½ � � E z0 ~y:

q
qt

ln f tðv; uÞ

� �
þ E z0 ~y:

q
qt

ln f tðuÞ

� �
¼ E½z0 ~y:Sðe; v; uÞ� � E½z0Eð ~y j v; uÞ:Sðv; uÞ� þ E½z0Eð ~y j uÞ:SðuÞ�,

where Sðe; v; uÞ ¼ ðq=qtÞ ln f tðe; v; uÞ is the score of the model evaluated at the true value
(respectively Sðv; uÞ ¼ ðq=qtÞ ln f tðv; uÞ and SðuÞ ¼ ðq=qtÞ ln f tðuÞ). As for any function
fðv; uÞ

Eðfðv; uÞSðv; uÞÞ ¼ Eðfðv; uÞSðe; v; uÞÞ

we therefore have

qpt

qt

				
t¼0

¼ E½z0ð ~y� Eð ~y j v; uÞ þ Eð ~y j uÞÞ:Sðe; v; uÞ�

and the variance covariance of p̂ is the variance of q:

q ¼ z0ð ~y� Eð ~y j v; uÞ þ Eð ~y j uÞ � xb0Þ

since Eq ¼ 0 and where we used that p0 ¼ Eðz0xÞb0

C.3. Theorem 8

When f ðv jx; zÞ is unknown and estimated, Lewbel (2000) and Appendix C.2 shows that
the variance–covariance matrix of the estimator of p0 is the variance–covariance of the
random variable:

q ¼ z0ð ~y� Eð ~y j v; x; zÞ þ Eð ~y jx; zÞ � xb0Þ.

When f ðv jx; zÞ is known, the variance is the usual GMM variance–covariance matrix of

q0 ¼ z0ð ~y� xb0Þ.

Note that it is the same variable ~y which is used here since we deal with asymptotics andbf ðv jx; zÞ is consistent for f ðv jx; zÞ. Denote

Z0 ¼ ~y� xb0
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and write

q ¼ z0ðZ0 � EðZ0 j v;x; zÞ þ EðZ0 jx; zÞÞ.

Consider

Z ¼ Z0 � EðZ0 j v;x; zÞ þ EðZ0 jx; zÞ

so that we can write

Vq0 ¼ Eðz0:EððZ0Þ
2
j v;x; zÞ:zÞ,

Vq ¼ Eðz0:EððZÞ2 j v;x; zÞ:zÞ.

Some algebra yields

EððZÞ2 jx; z; vÞ ¼ E½ðZ0 � EðZ0 j v; x; zÞ þ EðZ0 jx; zÞÞ
2
j v;x; z�

¼ E½ðZ0Þ
2
þ ðEðZ0 j v;x; zÞÞ

2
þ ðEðZ0 jx; zÞÞ

2
j v; x; z�

� 2E½Z0EðZ0 j v;x; zÞ j v;x; z� þ 2E½Z0EðZ0 jx; zÞ j v;x; z�

� 2EðZ0 j v;x; zÞEðZ0 jx; zÞ

¼ E½ðZ0Þ
2
j v;x; z� � ðEðZ0 j v; x; zÞÞ

2
þ ðEðZ0 jx; zÞÞ

2.

Therefore

D ¼ Vq0 � Vq ¼ Eðz0:½ðEðZ0 jx; z; vÞÞ
2
� ðEðZ0 jx; zÞÞ

2
�:zÞ.

As we can write

EðZ0 jx; z; vÞ ¼ EðZ0 jx; zÞ þ Z1,

where EðZ1 jx; zÞ ¼ 0, we have

EðZ0 jx; z; vÞ
2
¼ EðZ0 jx; zÞ

2
þ ðZ1Þ

2
þ 2EðZ0 jx; zÞZ1

and therefore:

D ¼ Vq0 � Vq ¼ Eðz0:½ðZ1Þ
2
þ 2Z1EðZ0 jx; zÞ�:zÞ

¼ Eðz0:ðZ1Þ
2:zÞ þ 2Eðz0:Z1EðZ0 jx; zÞ:zÞ

¼ Eðz0:ðZ1Þ
2:zÞ þ 2Eðz0:EðZ1 jx; zÞEðZ0 jx; zÞ:zÞ

¼ Eðz0:ðZ1Þ
2:zÞ

is a semi-definite positive matrix.
Finally observe that

EððZ1Þ
2
j zÞ ¼ V

Gðv;x; zÞ � 1fv40g

f ðv jx; zÞ
j zÞ

� �
is strictly positive if v varies over its support and G is continuous. If Eðz0zÞ has full rank, D
is definite positive.
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