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We investigate identification in semi-parametric binary regression models, y = 1(xβ + v + ε > 0)
when v is either discrete or measured within intervals. The error term ε is assumed to be uncorrelated
with a set of instruments z, ε is independent of v conditionally on x and z, and the support of −(xβ + ε)
is finite. We provide a sharp characterization of the set of observationally equivalent parameters β. When
there are as many instruments z as variables x , the bounds of the identified intervals of the different scalar
components βk of parameter β can be expressed as simple moments of the data. Also, in the case of
interval data, we show that additional information on the distribution of v within intervals shrinks the
identified set. Specifically, the closer the conditional distribution of v given z is to uniformity, the smaller
is the identified set. Point identified is achieved if and only if v is uniform within intervals.

1. INTRODUCTION

In empirical research, point identification of parameters often requires assumptions that are
difficult to justify. The recourse to more credible and weaker restrictions leading to partial
identification remains rare. Yet, in the case where the identified region is convex and bounded,
the context of partial identification is not conceptually different from the familiar context of
confidence intervals.

In this paper, we analyse partial identification in a binary regression model with discrete
or interval-valued data. Although admittedly specific, this is a case which is surprisingly rich
in terms of implications and facility of application. The identified set is bounded and convex.
Bounds are easy to characterize by simple moments of the data.

One of the practical advantages of our model stems from the fact that available data on
covariates are very often discrete or interval valued. Such covariates tend to render point identi-
fication very problematic (Manski, 1988; Horowitz, 1998). When all covariates (denoted x) are
discrete, Bierens and Hartog (1988) show that there is an infinite number of single-index repre-
sentations for the mean regression of a dependent variable, y. Under weak conditions, for almost
any parameter θ, there exists a measurable real function ϕθ such that E(y | x) can be written as
ϕθ (xθ).

The contribution by Manski and Tamer (2002) considers a reasonably more specific frame-
work where the non-parametric mean regression E(y | x) is assumed monotonic with respect to
at least one particular regressor, say v . As a special case, they study the identification of the
parameter of the familiar semi-parametric binary regression model y = 1(xβ + v + ε > 0),
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when only interval data are available on v . They analyse the identification of β under a quantile
independence assumption and show that parameters belong to a non-empty convex set of obser-
vationally equivalent values.

The first message of our paper is that set identification of parameter β in the binary model
can be obtained through a different set of weak restrictions (i.e. Lewbel, 2000) and that esti-
mation of the identified region in this setting only requires usual regression tools. Specifically,
it is shown that the combination of an uncorrelated error assumption (i.e. E(x ′ε) = 0) with a
conditional independence assumption (i.e. Fε(ε | x,v) = Fε(ε | x)) and a finite support assump-
tion (Supp(−xβ − ε) ⊂ [vl ,vu], where vl and vu are finite) restricts the parameters of the semi-
parametric binary regression model to a non-empty bounded and convex set. We characterize the
identified intervals of any scalar linear combination of parameter β and show that the bounds
of these intervals can be estimated using simple linear regression methods. It yields a simple
analytical expression of the support function, which completely characterizes the identified set
B. These findings are probably the most important results of this paper for practitioners because
they enable researchers to estimate the identified set very easily.

Conditional independence in the latent model implies that the binary outcome is monotone
in v . Interestingly, the support condition does not impose supplementary restrictions on the binary
outcome that can be analysed, although it requires one to be careful when it comes to application.
The support assumption implies that when v is varying between the extreme points vl to vu—
which are not necessarily observed in the data—the conditional probability of success varies
from 0 to 1. As discussed below, there are many potential applications of this set-up, including
contingent valuation studies, optimal schooling models, failure time experiments, and any models
where y∗ = xβ + ε represents a subject’s latent ability, −v an exogenous threshold, and where
we observe y = 1(y∗ > −v) only.

A final interesting feature of the set-up analysed in this paper is for the case where v is
censored by interval. In this case, additional information on the distribution of v within intervals
might reduce the size of the identified region. Specifically, the size of the identified region di-
minishes (in a sense made precise below) as the conditional distribution of the special regressor
within intervals becomes closer to uniformity. The identified set is a singleton, and the param-
eter of interest β is exactly identified if and only if v is uniformly distributed within intervals
conditional on covariates. This property is particularly interesting when one has control over the
process of censoring the continuous data on v (e.g. the birth date) into interval data (e.g. month
of birth). In order to minimize the size of the identified set, one should censor the data such that
the distribution of the censored variable is as close as possible to a uniform distribution within
the resulting intervals.

This paper belongs to the small, but growing literature on partial identification as pioneered
by Manski (2003, and references therein) and derived from seminal papers such as Marschak and
Andrews (1944) and Fréchet (1951). Our results on bounds of parameters in binary regressions
can be seen as generalizations of bounds on averages, derived by Green, Jacowitz, Kahneman
and McFadden (1998). They are also reminiscent of the results presented by Leamer (1987) and
Chesher (2003). Several recent papers address the inference issues about sets (Horowitz
and Manski, 2000), or change focus by considering the true values of the parameter (Imbens
and Manski, 2004; Andrews and Guggenberger, 2007) following Anderson and Rubin’s (1949)
seminal contribution. Specifically, Chernozhukov, Hong and Tamer (2007) study inference about
true parameters under more general conditions of set identification than ours. We show how their
findings can be applied to our results. Finally, Beresteanu and Molinari (2006) develop inference
procedures that could be adapted to the monotone binary model considered here.

The paper is organized as follows: the first section sets up notations and models; the sec-
ond section examines the discrete case; the third section analyses the case of interval data; the

c© 2008 The Review of Economic Studies Limited



MAGNAC & MAURIN IDENTIFICATION IN MONOTONE BINARY MODELS 837

fourth section briefly reports Monte Carlo experiments and the last section concludes. Straight
from the start, we will consider the endogenous case where ε, though potentially correlated with
the variables x , is uncorrelated with a set of instruments z (the special case where variables x
are exogenous is not simpler). Some results will be specific to the case where the number of
instruments is equal to the number of explanatory variables. All proofs are in appendices.

2. THE SET-UP

Let the “data” be given by the distribution of the following random variable:1

ω = (y,v, x, z),

where y is a binary outcome, while v , x , and z are covariates and instrumental variables whose
role and properties are specified below. We first introduce some regularity conditions on the dis-
tribution of ω. They will be assumed valid in the rest of the text.

Assumption R (egularity):

(R.i .) (Binary model) The support of the distribution of y is {0,1}
(R.i i.) (Covariates and Instruments) The support of the distribution, Fx,z of (x, z) is Sx,z ⊂

R
p ×Rq . The dimension of the set Sx,z is r ≤ p +q where p +q −r are the potential over-

laps and functional dependencies.2 The condition of full rank, rank(E(z′x)) = p, holds.
(R.i i i.) (Discrete or Interval-Valued Regressor) The support of the distribution of v conditional

on (x, z) is a set �v ⊂ [v1,vK ], a finite interval, almost everywhere-Fx,z (a.e. Fx,z). This
conditional distribution, denoted Fv (· | x, z), is defined a.e. Fx,z .

(R.iv .) (Functional Independence) There is no subspace of �v × Sx,z of dimension strictly less
than r +1 whose probability measure, (Fv (· | x, z).Fx,z), is equal to 1.

Assumptions (R.i) and (R.i i) define a binary model where there are p explanatory variables
and q instrumental variables. In assumption (R.i i i,) the support of v is assumed to be indepen-
dent of variables (x, z). If this support is an interval in R (including R itself), we are back to the
case studied by Lewbel (2000) and Magnac and Maurin (2007). In the next section (Section 3),
this support is assumed to be discrete, �v = {v1, . . . ,vK } so that the special regressor is said to be
discrete. In Section 4, the support is assumed continuous, �v = [v1,vK ), but v is observed im-
perfectly because it is censored. In such a case, the special regressor is said to be interval valued.
In all cases, Assumption (R.iv) avoids the degenerate case where v and (x, z) are functionally
dependent.

There are many examples of discrete covariates in applied econometrics. Variables, such as
gender, levels of education, occupational status, or household size of survey respondents are gen-
uinely discrete. In contingent valuation studies, prices are set by the experimenter, and they are in
general discrete, by steps of 0·10, 1, or 10 euros. There are also many examples of interval-valued
data. They are common in surveys where, in case of non-response to an item, follow-up questions
are asked. Manski and Tamer (2002) describe the example of the Health and Retirement Study.
If a respondent does not want to reveal his wealth, he is then asked whether it falls in a sequence
of intervals (unfolding brackets). Another important reason for interval data is anonymity. Age
is a continuous covariate, which could, in theory, be used as a source of continuous exogenous

1. We only consider random samples and we do not subscript individual observations by i .
2. With no loss of generality, the p explanatory variables x can partially overlap with the q ≥ p instrumental vari-

ables z. Variables (x, z) may also be functionally dependent (for instance, x , x2, log(x),. . . ). A collection (x1, . . . , xK )
of real random variables is functionally independent if its support is of dimension K (i.e. there is no set of dimension
strictly lower than K whose probability measure is equal to 1).
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variation in many settings. For confidentiality reasons, however, statisticians often censor this in-
formation in the public versions of household surveys by transforming dates of birth into months
(or years) of birth only. They are afraid that the exact date of birth along with other individual
and household characteristics might reveal the identity of households responding to the survey.

2.1. The latent model

Assuming that the data satisfy ((R.i)−(R.iv)), the question addressed in this paper is how they
can be generated by the following semi-parametric latent variable index structure:

y = 1{xβ + v + ε > 0}, (LV)

where 1{A} is the indicator function that equals 1 if A is true and 0 otherwise and where the
random shock ε satisfies the following properties,

Assumption L (atent):

(L .1) (Conditional independence) ε and v are independent conditionally on covariates x and
variables z.

Fε(· | v, x, z) = Fε(· | x, z).

The support of ε is denoted �ε(x, z).
(L .2) (Support) There exist two finite real numbers vl and vu such that the support of −xβ − ε

is included in [vl ,vu) and such that vl ≤ v1 and vu ≥ vK (see (R.i i i)).
(L .3) (Moment condition) ε is uncorrelated with variables z:

E(z′ε) = 0.

Powell (1994) discusses conditional independence assumptions (calling them exclusion re-
strictions) in the context of other semi-parametric models, that is, without combining them with
(L .2) or (L .3). More recently, Lewbel (2000) and Honoré and Lewbel (2002) provide an anal-
ysis of model (LV ) using (L .1) and a more restrictive support assumption (Supp(−xβ − ε) ⊂
Supp(v)) as identifying restrictions.3

As defined by (L .1) and (L .2), conditional independence and support assumptions restrict
the class of statistical models that can actually be analysed. If a binary reduced-form Pr(y = 1 |
v, x, z) is generated through (LV) by a latent model satisfying(L .1−L .3), it necessarily satisfies,

Pr(y = 1 | v, x, z) = Pr(ε > −xβ − v | x, z) = 1− Fε(−xβ − v | x, z),

which implies that Pr(y = 1 | v, x, z) is non-decreasing in v . Second, as the support of −xβ − ε
is included in [vl ,vu), we have necessarily Pr(y = 1 | vl , x, z) = 0 and Pr(y = 1 | vu, x, z) = 1.
To sum up, we have

(NP.1) (Monotonicity) The conditional probability Pr(yi = 1 | v, x, z) is non-decreasing in v
(a.e. Fx,z).

(NP.2) (Complete Variation) There exist two finite real numbers vl and vu such that Pr(yi = 1 |
v = vl , x, z) = 0 and Pr(yi = 1 | v = vu, x, z) = 1.

3. There is another minor difference between assumptions L and the set-up introduced by Lewbel (2000), namely
the distribution function Fε can have mass points. When the special regressor is discrete or interval valued, it is much
easier than in the continuous case to allow for such discrete distributions of the unobserved factor. If all distribution
functions are CADLAG (i.e. continuous on the right, limits on left), the large support assumption (L .2) has to be slightly
rephrased, however, in order to exclude a mass point at −xβ − vu .
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In the following, we focus on the class of statistical models satisfying (NP.1−NP.2) and
analyse the conditions under which they can be generated through (LV) by a latent model satis-
fying (L.1−L.3). To better understand what the restriction (NP.2) implies for applied research, it
is worth distinguishing two cases. First, when Pr(y = 1 | v, x, z) is actually observed increasing
from 0 when v = v1 to 1 when v = vK , then vl can be set equal to v1 and vu equal to vK . In
such a case, (NP.2) is unambiguously satisfied. Second, when either Pr(y = 1 | v1, x, z) > 0 or
Pr(y = 1 | vK , x, z) < 1, then either vl or vu has to be set outside the observed support of v . In
such a case, Pr(y = 1 | v, x, z) satisfies (NP.2) only if there are plausible values of vl and vu

outside the observed support of v such that Pr(y = 1 | vu, x, z) = 0 or Pr(y = 1 | vl , x, z) = 1. By
construction, this assumption is not testable. As we now discuss, there are many examples where
this assumption is plausible. However, the case should be argued in each specific application.

2.2. Examples

Potential applications of Assumption L include controlled experiments where y∗ = xβ + ε rep-
resents a latent failure time and where individuals (or animals, or equipment) are observed at
discrete, exogenously set, points in time or after having been exposed to discrete exogenously
set doses of treatment (denoted −v). We observe y = 1(xβ + ε > −v) and we seek to identify
β. By construction, this model satisfies the conditional independence and the uncorrelated error
assumptions. It satisfies the support assumption provided that one can assume that the probabil-
ity of “failure” goes from 0 at the beginning of the experiment to 1 after a sufficiently long (or
strong) exposition to the treatment.

A second type of application is optimal investment models. For example, in optimal school-
ing models, y∗ = xβ + ε represents the number of years of post-compulsory education which
maximizes discounted lifetime wealth4 and −v is the respondent’s age minus the minimum
school-leaving age. The effects of family background x on y∗ is the parameter of interest. Surveys
provide us with information about y = 1(y∗ > −v) only, namely an indicator that the respondent
still attends school at −v . In these models, the support assumption is essentially that there is an
upper bound for the number of years that can be spent in the higher education system.

Other interesting empirical applications come from contingent valuation studies where we
evaluate the impact of covariates x on the willingness to pay y∗ = xβ + ε for a good or a re-
source, see, for example, Lewbel, Linton and McFadden (2006). Individuals are asked whether
their willingness to pay exceeds a bid −v chosen by experimental design. Again, we observe
y = 1(xβ + ε > −v) and we seek to identify β. Bids are typically drawn from a discrete distri-
bution. Given the experimental design, they may be constructed in order to satisfy the exclusion
restriction (L .1). The model satisfies the support assumption provided that it can be assumed
that nobody would answer “yes” for sufficiently high bids and nobody would answer “no” for
sufficiently low bids.

Finally, applications of the conditional independence set-up are also provided by cases
where y∗ is a latent ability, v an exogenous ability threshold and where y indicates whether
ability exceeds a given threshold. For example Maurin (2002) estimates a model on French data
where y is grade repetition in primary schools, y∗ is pupils’ latent schooling ability, x is parental
income, v is date of birth within the year. The date of birth within the year determines pupils’
age at entry into elementary school and, as such, represents an important determinant of early
performance at school. In this model, the support assumption means that if it were possible to
observe sufficiently young children at entry into elementary school, they would all have to re-
peat a grade. In contrast, sufficiently mature children would all be able to avoid grade repetition.

4. See, for example, Cameron and Heckman (1998).
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A related example is Lewbel (2006) who studies the ability to obtain a university degree using
the cost of attending a local public college (relative to local unskilled wages) as the exogenous
regressor v .

2.3. Identifying restrictions and parameter of interest

The relationship between our set-up and the one in Manski and Tamer (2002) is similar to the
relationship between quantile independence (Manski, 1988) and the identifying restrictions of
Lewbel (2000). The quantile independence set-up assumes that one quantile of ε is independent
of all covariates, whereas the conditional independence assumption used in this paper is equiva-
lent to assuming that all quantiles of ε are independent of one covariate. In this crude sense, both
assumptions are comparably restrictive. Another difference is that the conditional independence
hypothesis makes it possible to characterize the domain of observationally equivalent distribu-
tion functions of the unobserved residuals. The price to pay is that conditional independence
requires additional conditions on the support of the covariates and these are stronger than the
conditions required under quantile independence. Assumption L and other examples are com-
mented in Lewbel (2000) or Magnac and Maurin (2007). Once v is continuously distributed and
has large support (i.e. Supp(−xβ − ε) ⊂ [vl ,vu)), the latter paper shows that Assumption L is
sufficient for exact identification of both β and Fε(· | x, z).

Before moving on to the issue of identification of β, it is important to understand the rela-
tionship between this parameter and the effect of changes in covariates on the choice probability.
Consider an experiment where (say) (v, x ′ = x + δx , z) is assigned to everyone of characteristics
(v, x, z), namely a exogenous change δx in covariates holding the unobserved heterogeneity term
ε constant. The counterfactual probability of success conditional on (v, x, z) is

E(1{v + (x + δx )β + ε > 0} | v, x, z) = E(1{(v + δxβ)+ xβ + ε > 0} | x, z)

= Pr(y = 1 | x,v + δxβ, z).

In other words, the probability of success when (v, x ′ = x + δx , z) is assigned to everyone
of characteristics (v, x, z) is equal to the probability of success actually observed in the data
conditional on (v + δxβ, x, z). The parameter of interest β defines the shifts in v whose effects
on y are equivalent to exogenous shifts in x when we hold v and z constant.

In the following, any (β, Fε(· | x, z)) satisfying Assumption L is called a latent model. The
index parameter β ∈ Rp is the unknown parameter of interest. The distribution function of the
error term, ε, is also unknown and may be considered as a nuisance parameter. Identification is
studied in the set of all such parameters (β, Fε(· | x, z)).

3. THE DISCRETE CASE

In this section, the support of the special regressor is supposed to be a discrete set given by

Assumption D (iscrete): �v = {v1, . . . ,vK },vk < vk+1 for any k = 1, . . . , K −1.

We consider a binary reduced-form Pr(y = 1 | v, x, z) satisfying (NP.1−NP.2) and we ask
whether there is a latent model (β, Fε(· | x, z)) satisfying assumptions (L .1− L .3) and generating
through (LV ) the values Pr(y = 1 | v = vk, x, z), k = 1, . . . , K , taken by Pr(y = 1 | v, x, z) on the
observed support of v . The answer is positive though the admissible latent model is not unique.
There are many possible latent models whose parameters are observationally equivalent. We start
this section by proving that the identified set is given by a set of incomplete moment restrictions.
We continue by showing that this set is non-empty, bounded and convex. We then give a sharp
characterization of the identified set.
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3.1. Incomplete moment restrictions

We begin with a one-to-one change in variables, which will allow us to characterize the set of
observationally equivalent parameters through simple linear moment conditions. Denote

δk = (vk+1 − vk−1)/2 for k ∈ {2, . . . , K −1}
δ1 = (v2 − vl)/2, δK = (vu − vK−1)/2

pk(x, z) = Pr(v = vk | x, z).

Using these notations, the transformation of the binary response variable, which will be used
to characterize the identified set is defined as5

ỹ = δk .y

pk(x, z)
− vu + vK

2
if v = vk, for k ∈ {1, . . . , K }. (1)

In contrast to the large-support, continuous case studied by Lewbel (2000) or Magnac and
Maurin (2007), the identification of β when v is discrete is not exact anymore. The following
theorem shows that β satisfies a set of moment conditions that are incomplete.

Theorem 1. Let us consider β a vector of parameter and, Pr(y = 1 | v = vk, x, z) (denoted
Gk(x, z)) for k = 1,. . . ,K, a conditional probability function which is non-decreasing in v. The
two following statements are equivalent,

(i) there exists a latent random variable ε such that the latent model (β, Fε(· | x, z)) satisfies
Assumption L and such that Gk(x, z), k = 1,. . . ,K, is the image of (β, Fε(· | x, z)) through
the transformation (LV ),

(ii) there exists a measurable function u(x, z) from Sx,z to R which takes its values in the
interval (a.e.Fx,z) I (x, z) = (−�(x, z),�(x, z)], where �(x, z) is positive and defined by,

�(x, z) = (v1 − vl)

2
G1(x, z)+

K∑
k=2

[
(vk − vk−1)

2
(Gk(x, z)− Gk−1(x, z))

]
+ (vu − vK )

2
(1− G K (x, z)),

and such that,

E(z′(xβ − ỹ) = E(z′u(x, z)). (2)

Proof. See Appendix A. ‖

Theorem 1 characterizes the set denoted B of all observationally equivalent values of pa-
rameter β. It shows that β ∈ B if and only if it satisfies equation (2), which is an incomplete
moment restriction since function u(x, z) is not completely known. Green et al. (1998) proves a
special case of this theorem when neither regressors x nor instruments z are present. It allows
them to provide bounds for the average willingness to pay in a contingent valuation experiment.
As discussed in a remark in Appendix A, the proof of Theorem 1 also leads to a characterization
of the set of observationally equivalent distribution functions Fε(· | x, z).

5. For almost all (v, x, z) in its support, which justifies that we divide by pk (x, z). Division by 0 is a null-
probability event.
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3.2. Sharp bounds on structural parameters

This section builds on Theorem 1 to provide a detailed description of B, the set of observationally
equivalent parameters. We focus on the case where the number of instruments z is equal to the
number of variables x (the exogenous case z = x being the leading example). At the end of the
section, we briefly discuss how the results could be extended to the case where the number of
instruments z is larger that the number of explanatory variables, x .

3.2.1. General properties of the identified set. When the number of instruments is equal
to the number of variables, the assumption that E(z′x) is full rank (R.ii) implies that equation (2)
has one and only one solution in β for any function u(x, z). Given that u(x, z) = 0 is admissible,
B is non-empty. It contains β∗ the focal value associated with u(x, z) = 0,

E(z′(xβ∗ − ỹ)) = 0.

Second, set B is convex because the set of admissible u(x, z) is convex and equation (2) is
linear in β. Lastly, since

�(x, z) ≤ �M = max(v1 − vl , . . . ,vk − vk−1, . . . ,vu − vK )/2

the admissible u(x, z) is bounded by �M so that B is bounded. Specifically, using the definition
of β∗ and rephrasing Theorem 1, β lies in B if and only if there is u(x, z) taking its value in
I (x, z) such that

E(z′x)(β −β∗) = E(z′u(x, z)).

Denoting W = E(z′z)−1/2 E(z′x) and using the generalized Cauchy–Schwarz inequality, we
have,

(β −β∗)′W (β −β∗) = E(u′(x, z)z)E(z′z)−1 E(z′u(x, z)) ≤ E(u2(x, z)).

As �(x, z) ≤ �M, we have,

(β −β∗)′W (β −β∗) ≤ E(u2(x, z)) ≤ E(�(x, z)2) ≤ �2
M,

which shows that B is included in a sphere in the metric W . Previous developments are summa-
rized in the following proposition,

Proposition 2. The identified set B is non-empty, convex, and bounded. It contains the
focal value β∗ = E(z′x)−1 E(z′ ỹ). In the metric W , B is included in a sphere whose centre is β∗
and whose radius is �M.

The maximum-length index, �M, can be taken as a measure of distance to continuity
of the distribution function of v (or between its support �v and [vu,vl ]). For a latent model (β,
Fε(· | x, z)), Proposition 2 proves that, for a sequence of supports �v indexed by �M, the distance
d(β∗, B) = inf

b∈B
‖β∗ −b‖ between β∗ and B converges to 0 as �M 	→ 0:

lim
�M 	→0

d(β∗, B) = 0,

and point identification is restored. We now give sharp bounds—first for single coefficients, sec-
ond for linear combinations of coefficients—and show that it yields a sharp characterization of
set B.
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3.2.2. Interval identification in the coordinate dimensions. Let

Bp =
{
βp ∈ R | ∃(β1, . . . ,βp−1) ∈ Rp−1, (β1, . . . ,βp−1,βp) ∈ B

}
represent the identified interval of the last coefficient (say). All scalars belonging to this interval,
are observationally equivalent to the p-th component of the true parameter.

Proposition 3. Bp is an interval centred at β∗
p, the p-th component of β∗. Specifically, we

have,

Bp =
(

β∗
p − E(|x̃ p|�(x, z))

E(x̃ p
2)

; β∗
p + E(|x̃ p|�(x, z))

E(x̃ p
2)

]
,

where x̃ p is the remainder of the IV-projection of x p onto the other components of x using instru-
ments z (as formally defined in the proof).

Proof. See Appendix A. ‖

Given that the estimation of Bp requires the estimation of E(|x̃ p|�(x, z)), it is worth em-
phasizing that �(x, z) can be rewritten E(ỹ� | x, z) where ỹ�, as ỹ, is an affine function of y
whose definition is given in the appendix at the end of the proof of Proposition 3. Furthermore,
by definition, β∗

p = E(|x̃ p |ỹ)

E(x̃ p
2)

. Hence, the construction of the upper and lower bounds of Bp only

requires (1) the construction of the transforms ỹ + ỹ�, ỹ − ỹ�, (2) the construction of the residual
x̃ p, and (3) the linear regression of ỹ + ỹ�, ỹ − ỹ� on |x̃ p|. Estimation follows accordingly.

To be as specific as possible, we now develop the estimation procedure in the case of con-
tingent valuation studies, one of the examples examined in Section 2.2. The very exogenous
regressor v is the opposite of the discrete bid that is proposed to each interviewee. Variables x
might include total expenditure, which is endogenous, and might be instrumented by exogenous
income as in standard demand theory. The first step consists in constructing transformation (1)
using the binary dependent variable, the discrete values of the support of the bids, vk, and the
empirical frequency of these values in the sample, p̂k . Those frequencies do not depend on (x, z)
since they are chosen by experimental design. The construction of the other transform ỹ� uses
the same objects and is as simple as the first. In the second step, we regress the variable of in-
terest on to the other explanatory variables using the instruments z. Finally, we perform the two
regressions of the two transforms ỹ + ỹ�, ỹ − ỹ� onto |x̃ p|.

3.2.3. Characterization and construction of the identified region. We begin with char-
acterizing the identified interval of any linear combination of the parameters.

Consider q a column vector of dimension [p,1] such that ‖ q ‖= 1. The issue is to char-
acterize the identified interval of βq = q ′β. To begin with, we can always chose Q a matrix of
dimension [p, p − 1] such that the matrix (Q,q) is an orthogonal matrix of dimension p. By
construction, it satisfies (Q,q)(Q,q)′ = I so that

xβ = x(Q,q)(Q,q)′β.

The p-th component of parameter (Q,q)′β is βq = q ′.β. It is associated with the p-th ex-
planatory variable, sq = xq. Let Bq denote the identified interval associated with this explanatory
variable. Denoting s̃q the remainder of the projection of sq onto x Q, we can apply Proposition 3
and write,

Bq =
(

q ′.β∗ − E(|s̃q |�(x, z))

E(s̃2
q )

,q ′.β∗ + E(|s̃q |�(x, z))

E(s̃2
q )

]
.
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For any normalized vector of weights q, this equation provides us with an analytical definition
of the set of scalars that are observationally equivalent to the true q ′β.6 By construction, for any
q in the unit sphere of Rp (denoted S) the upper bound of Bq corresponds to the supremum of
q ′.β when β lies in B. This function is known as the support function of B at q. It is denoted
δ∗(q | B) and it is equal to

δ∗(q | B) = sup
β∈B

q ′.β = q ′.β∗ + E(|s̃q |�(x))

E(s̃2
q )

.

It leads to a sharp characterization of the identified set B. As B is bounded and convex, its
closure cl(B) is indeed completely characterized by its support function and equal to the inter-
section of its supporting half spaces (Rockafellar, 1970),

cl(B) =
{

β such that for any q ∈ S, q ′β ≤ q ′.β∗ + E(|s̃q |�(x))

E(s̃2
q )

}
.

Interestingly enough, we have an analytical definition of the support function of B. This
makes it possible to construct B very easily by simulation. Randomly draw S vectors qs, ‖ qs ‖=
1, construct the half spaces {q ′

sβ ≤ δ∗(qs | B)} and their intersection. Then make S go to infinity.
The effect on set B of various auxiliary parameters can now be assessed. The impact of the

limit points vl ,vu are of particular interest in the case where they do not belong to the support of
v (vl < v1 or vK < vu) and where G1(x, z) > 0 or G K (x, z) < 1. Using the definitions of β∗ and
�(x, z), it is not difficult to check that

∂δ∗(q | B)

∂vl
= −E((|s̃q |− s̃q)G1(x, z))

E(s̃2
q )

and
∂δ∗(q | B)

∂vu
= E((|s̃q |− s̃q)(1− G K (x, z))

E(s̃2
q )

,

which depend neither on vl nor on vu . As ∂δ∗
∂vl

< 0 or ∂δ∗
∂vu

> 0, the size of B decreases when vl

or vu are getting closer to the actual limits of the support of v , [v1,vK ]. Second, B becomes
unbounded in all directions when either vl → −∞ or vu → +∞. This result was obtained by
Magnac and Maurin (2007) when v is continuous.

Regarding inference, Chernozhukov et al. (2007) and Andrews and Guggenberger (2007)
provide tools that can be applied to estimate either the intervals of interest or the whole of set B.
Specifically, Chernozhukov et al. (2007) provide confidence regions for sets of parameters that
correspond to the zeroes of a non-negative continuous function, Q(β). In our case,

Q(β) =
∫
S

(q ′β − δ∗(q | B))21(q ′β > δ∗(q | B))dµ(q)

where dµ(q) can be any strictly positive finite measure on the unit sphere S. The sample ana-
logue Qn of Q is not difficult to construct since δ∗(q | B) can be estimated through simple lin-
ear regressions. In such a context, assuming various regularity conditions, Chernozhukov et al.
(2007) show how to construct confidence sets Cn such that lim

n 	→∞P(B ⊂ Cn) = α or lim
n 	→∞supβ∈B

P(β ⊂ Cn) = α for a prespecified confidence level α ∈ (0,1).

3.3. Supernumerary restrictions

A potentially interesting development of this framework is when the number of instruments is
larger than the number of variables (q > p). In such a case, B is not necessarily non-empty, since

6. It is worth emphasizing that s̃q (and consequently, Bq ) is independent of the choice of the matrix Q. It can be
shown that it is invariant to the replacement of Q by Q R, where R can be any orthogonal matrix.
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condition (2) in Theorem 1 may have no solutions at all (i.e. some supernumerary restrictions
may not be true).

Consider z A, a random vector whose dimension is the same as random vector x, defined by

z A = z A

and such that E(z′
Ax) is full rank. Define the set, A, of such matrices A of dimension p, q.

The previous analysis can then be repeated for any A in such a set. The identified set B(A) is
now indexed by A. Under the maintained assumption (L .3), the true parameter (or parameters)
belongs to the intersection of all such sets when matrix A varies:

B ⊂
⋂
A∈A

B(A).

The set on the R.H.S. is convex because it is the intersection of convex sets. Also, we can
always project this set onto its elementary dimensions. The intersection of the projections is the
projection of the intersections. What changes is that it can be empty. As a subject of a companion
paper (Bontemps, Magnac and Maurin, 2007) we are currently exploring ways of characterizing
the support function of B and the possibility of constructing test procedures of supernumerary
restrictions in such partial identification frameworks, when the number of instruments is greater
than the number of covariates.

4. INTERVAL DATA

In this section, we deal with the case where v is continuous although it is observed by intervals
only. We show that the identified set has a similar structure as in the discrete case. It is a con-
vex set and, when there are no supernumerary restrictions (p = q), it is not empty. It contains
the value corresponding to an IV regression of a transformation of y on x given instruments z.
When some information is available on the conditional distribution function of regressor v within
intervals, the identified set shrinks. Its size diminishes as the distribution function of the special
regressor within intervals becomes closer to uniformity. When v is conditionally uniformly dis-
tributed within intervals, the identified set is a singleton and the parameter of interest, β, is exactly
identified.

4.1. Identified set: the general case

The data are now characterized by a random variable (y,v,v∗, x, z) where v∗ is the result of
censoring v by interval:

v∗ = k.1{v ∈ [vk,vk+1)} for k = 1, . . . , K −1.

Only realizations of (y,v∗, x, z) are observed and those of v are not. Variable v∗ is discrete
and defines the interval in which v lies. More specifically, assumption D is replaced by

Assumption ID:

(i) (Interval Data) The support of v∗ conditional on (x, z) is {1, . . . , K −1} almost everywhere
Fx,z . The distribution function of v∗ conditional on (x, z) is denoted pv∗(x, z). It is defined
almost everywhere Fx,z .

(ii) (Continuous Regressor) The support of v conditional on (x, z,v∗ = k) is [vk,vk+1) (almost
everywhere Fx,z). The overall support is [v1,vK ) where v1 = vl and vK = vu . The distri-
bution function of v conditional on x, z,v∗ is denoted Fv (· | v∗, x, z) and is assumed to be
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absolutely continuous. Its density function denoted fv (· | v∗, x, z) is strictly positive and
bounded.

For the sake of simplicity, we focus on the case where v1 = vl and vK = vu . Our results can
readily be extended to cases where v1 > vl or vK < vu without additional insight. We consider
latent models which satisfy the large support condition (L .2) (i.e. the support of −xβ − ε is
included in the support of v), the moment condition (L .3) (i.e. E(z′ε) = 0) and the following
extension of the partial independence hypothesis,

Fε(· | v,v∗, x, z) = Fε(· | x, z). (L .1∗)

The conditional probability distributions Pr(y = 1 | v∗, x, z) generated through transforma-
tion (LV ) by such latent models is necessarily non-decreasing in v∗.

Interval censorship that we consider does not cover cases where intervals are unbounded on
the left and/or on the right. Using Magnac and Maurin (2007), we can indeed prove that parameter
β does not belong to a bounded set in these cases. Generally speaking, the set of assumptions
used in this section is quite similar to assumptions proposed by Manski and Tamer (2002). Their
Interval (I) assumption is equivalent to Assumption (ID.ii) and their monotone assumption (M)
is equivalent to the monotonicity restriction imposed on Pr(y = 1 | v∗, x, z) by our latent model.
Also their Mean Independence (MI) assumption is a consequence of our assumption (L .1∗),
ours being slightly stronger. However, we depart from the quantile restriction and exogeneity
assumptions that they use in the binary case, since we assume that shocks are uncorrelated with
some instruments z and that the bounds of the intervals of observation are not random.

Analogously to the discrete case, we begin with constructing a transformation of the depen-
dent variable. If δ(v∗) = vv∗+1 − vv∗ denotes the length of the v∗-th interval, the transformation
adapted to interval data is :

ȳ = δ(v∗)
pv∗(x, z)

y − vK . (3)

It is slightly different from the transformation used in the previous section in equation (1)
in terms of weights δ(v∗) and in reference to the end-points, yet the dependence on the random
variable y/pv∗(x, z) remains the same.

Using these notations, the following theorem gives a sharp representation of the set of
observationally equivalent parameters as solutions to incomplete linear moment conditions as
in Theorem 1.

Theorem 4. Consider β, a vector of parameter and Pr(y = 1 | v∗, x, z)(denoted Gv∗(x, z))
a conditional distribution function, which is non-decreasing in v∗. The two following statements
are equivalent,

(i) there exists a latent conditional distribution function of v , Fv (· | x, z,v∗), and a latent
random variable ε defined by its conditional distribution function Fε(· | x, z) such that

a. (β, Fε(· | x, z)) satisfies (L .1∗, L .2, L .3)
b. Gv∗(x, z) is the image of (β, Fε(· | x, z)) through the transformation (LV ),

(ii) there exists a function u∗(x, z) taking its values in I ∗(x, z) = (�∗(x, z),�
∗
(x, z)) where

(by convention, G0(x, z) = 0, G K (x, z) = 1),

�
∗
(x, z) =

∑
k=1,...,K−1

(Gk+1(x, z)− Gk(x, z))(vk+1 − vk),

�∗(x, z) = −
∑

k=1,...,K−1

(Gk(x, z)− Gk−1(x, z))(vk+1 − vk),
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and such that,

E(z′(xβ − ȳ) = E(z′u∗(x, z))). (4)

Proof. See Appendix B. ‖

Theorem 4 provides a characterization of the set of latent models satisfying (L .1∗ − L .3)
and generating Gk(x, z), k = 1, . . . , K −1, through (LV ). The identified set has the same general
structure in the interval data case as in the discrete case. It is a bounded and convex set, which
always contains the focal value defined by the moment condition E(z′(xβ∗ − ȳ) = 0. We now
study how additional information helps to shrink the identified set.

4.2. Inference using additional information on the distribution function of the special regressor

There are many instances where additional information on the conditional distribution function of
v within intervals is available. Variable v could be observed at the initial stage of a survey or a cen-
sus and for confidentiality reasons, dropped from the files that are provided to researchers. Only
information about interval data and the conditional distribution function of v remains. Another
instance is when the conditional distribution function of v is available in one database that does
not contain information on y, while the information on y is available in another database, which
contains only interval information on v .7 To analyse these situations, we complete the statistical
model by assuming that we have full information on the conditional distribution of v which is
denoted �(v | v∗, x, z).

The first unsurprising result is that additional knowledge of �(v | x, z,v∗) actually helps
to shrink the identified set. Secondly, knowing how identification is related to the conditional
distribution �(v | x, z,v∗) may provide interesting guidelines to control censorship and choose
intervals for defining v∗ in an optimal way. It is thus quite surprising to find that point identifi-
cation is restored provided that the conditional distribution function of the censored variable v is
piecewise uniform.

To state these two results, we are going to use indices measuring the distance of a distribution
function �(v | v∗ = k, x, z) to uniformity. Specifically, we denote

U (v | v∗ = k) = v − vk

vk+1 − vk
,

the uniform c.d.f., and we consider the two following indexes,

ξU
k (x, z) = sup

v∈(vk ,vk+1)

[
�−U

�

]
, ξ L

k (x, z) = inf
v∈(vk ,vk+1)

[
�−U

1−�

]
,

where the arguments of � and U are made implicit for expositional simplicity.
Given that � is absolutely continuous and its density is positive everywhere (ID.ii), �−U

�
and �−U

1−� are well defined on (vk,vk+1) and satisfy �−U
� < 1 and �−U

1−� > −1. Furthermore, given
that �−U

� (respectively �−U
1−� ) is continuous and equal to 0 at vk+1 (respectively vk), the supremum

of this function in the neighbourhood of vk+1(respectively vk) is non-negative (respectively non-
positive). Hence, we have ξ L

k (x, z) ∈ (−1,0] and ξU
k (x, z) ∈ [0,1), the two indices being equal

to 0 when � is equal to U. Using additional information, Theorem 4 is translated into

7. Moffitt and Ridder (2006) provides a survey of two-sample techniques for such data design.
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Theorem 5. Consider β, a vector of parameters, Pr(y = 1 | v∗, x, z) (denoted Gv∗(x, z)) a
conditional distribution function, which is non-decreasing in v∗ and �(v | v∗, x, z) a conditional
distribution function. The two following statements are equivalent,

(i) there exists a latent random variable ε defined by its conditional distribution function Fε(· |
x, z) such that

a. (β, Fε(· | x, z)) satisfies (L .1∗, L .2, L .3)
b. Gv∗(x, z) is the image of (β, Fε(· | x, z)) through the transformation (LV ),

(ii) there exists a function u∗(x, z) taking its values in [�∗
�(x, z),�

∗
�(x, z)] where

�∗
�(x, z) =∑k=1,...,K−1(vk+1 − vk)ξ

L
k (x, z)(Gk(x, z)− Gk−1(x, z))

�
∗
�(x, z) =∑k=1,...,K−1(vk+1 − vk)ξ

U
k (x, z)(Gk+1(x, z)− Gk(x, z))

and such that

E(z′(xβ − ȳ) = E(z′u∗(x, z))).

Proof. See Appendix B. ‖

Given that ξ L
k (x, z) ∈ (−1,0] and ξU

k (x, z) ∈ [0,1), the identified set characterized by
Theorem 5 is smaller than the identified set characterized by Theorem 4 when no information
is available on v (see below). Also, Theorem 5 makes clear that the size of the identified set
diminishes with respect to the distance between the conditional distribution of v and the uniform
distribution, as measured by ξ L

k (x, z) and ξU
k (x, z). When v is piecewise uniform (conditionally),

the identified set boils down to a singleton.

Corollary 6. The identified set is a singleton if and only if the conditional distribution,
�(v | x, z,v∗), for all v∗ = k , and a.e. Fx,z , is uniform, that is,

�(v | v∗ = k, x, z) = v − vk

vk+1 − vk
.

Proof. See Appendix B. ‖

Corollary 6 provides a necessary and sufficient condition for identification, which is very
different from the sufficient conditions given in Manski and Tamer (2002, corollary, p. 524).
Their conditions (c) and (d) for point identification imply a positive probability that the interval
of observation of v (denoted v0, v1 in their notation) is as small as we want. In our case, this
length is fixed. As our condition is necessary and sufficient, a complete comparison with what
can be obtained in the setting of Manski and Tamer (2002) is beyond the scope of this paper.

Assuming that the distribution of v is not piecewise uniform, the question remains as to
whether it is possible to rank the potential distributions of v according to the corresponding de-
gree of underidentification of β. The answer is that we can. Specifically, the closer the conditional
distribution of v is to uniformity, the smaller is the identified set.

To state this result, we first need to rank distributions according to the magnitude of their
deviations from the uniform distribution.
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Definition 7. �2(v | x, z,v∗) is closer to uniformity than �1(v | x, z,v∗), when a.e. Fx,z

and for any k ∈ {1, . . . , K −1}
ξ L

k,1(x, z) ≤ ξ L
k,2(x, z)

ξU
k,1(x, z) ≥ ξU

k,2(x, z).

The corresponding preorder is denoted �1 
 �2.

Using this definition

Corollary 8. Let �(v | v∗ = k, x, z) any conditional distribution. Let B denote the asso-
ciated region of identification for β. Then

�1 
 �2 �⇒ B�2 ⊆ B�1 .

Proof. Straightforward using Theorem 5. ‖

Assuming that we have some control over the construction of v∗ (i.e. using the informa-
tion about v that is made available to researchers), this result shows that the variable should be
constructed in such a way that minimizes the distance between the uniform distribution and the
distribution of v conditional on v∗ (and other regressors). Such a choice minimizes the length
of the identified interval. Consider, for instance, the date of birth. The frequency of this variable
plausibly varies from one season to another, or even from one month to another, especially in
countries where there are strong seasonal variations in economic activity. At the same time, it is
likely that the frequency of this variable does not vary significantly within months. Therefore, it
is uniformly distributed within months in most countries. In such a case, our results show that we
need only make available the month of birth of respondents (and not necessarily their exact date
of birth) to achieve exact identification of the structural parameters of binary models, which are
monotone with respect to date of birth.

4.3. Projections of the identified set

Results concerning projections of the identified set in the discrete case can easily be extended to
the case of interval data. As in the discrete case and for simplicity, we restrict our analysis to the
leading case when the dimension of z and x are the same. The identified set B can be projected
onto its elementary dimensions using the same usual rules as in Corollary 3.

Again let

Bp = {βp ∈ R | ∃(β1, . . . ,βp−1) ∈ Rp−1, (β1, . . . ,βp−1,βp) ∈ B
}

be the projected set corresponding to the last coefficient. We denote β∗ the solution of equation
(4) when function u∗(x, z) = 0 (as E(z′x) is a square invertible matrix):

β∗ = E(z′x)−1 E(z′ ȳ).

To begin with, we consider the case where no information is available on the distribution of
v and state the corollary to Theorem 4.

Corollary 9. Bp is an interval whose centre is β∗
p, where β∗

p represents the p-th component
of β∗. Specifically, we have,

Bp = (β∗
p +ςL ,p; β∗

p +ςU,p]
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where

ςL ,p = [E(x̃ p
2)]−1 E(x̃ p(1{x̃ p > 0}�∗(x, z)+1{x̃ p ≤ 0}�∗

(x, z))

ςU,p = [E(x̃ p
2)]−1 E(x̃ p(1{x̃ p ≤ 0}�∗(x, z)+1{x̃ p > 0}�∗

(x, z))

with x̃ p is the residual of the projection of x p onto the other components of x using instruments z.

Proof. See Appendix B. ‖

The corresponding corollary to Theorem 5 replaces �∗ and �
∗

by �∗
� and �

∗
�. In the proof,

we also show how to construct ςL ,p and ςU,p as functions of moments of observable variables as
in the previous section. Analogously, we can define the support function of set B for any vector
q of the unit sphere and characterize exactly set B and a criterium function Q(β) whose zeroes
define B.

5. MONTE CARLO EXPERIMENTS

Deriving empirical estimates for the upper and lower bounds of intervals of interest is straight-
forward since these bounds can be expressed as moments. When the number of observations
becomes large, the properties of interval estimates conform with theoretical properties that have
just been derived. It remains to be seen how these estimators of the bounds behave in small and
medium-sized samples (i.e. 100–1000 observations). This is why we briefly present Monte Carlo
experiments in this section. The simulated model is y = 1{1 + v + x2 + ε > 0}. For the sake of
clarity, the set-up is chosen to be as close as possible to the set-up originally used by Lewbel
(2000). We adapt this original setting to the case where regressor v is discrete or interval valued.
The design is described in Appendix B.

5.1. Statistical summaries

Before moving on to the results, we introduce simple statistics to describe the small sample
properties of our estimates. Let θ̂i , i = u,b, be the estimators of the lower and upper bounds of
the estimated interval and θ̄i = E(θ̂i ), i = u,b, the expected values of these estimators. Using
these notations, let us consider θ̄m = (θ̄u + θ̄b)/2 the expected average of the estimated lower and
upper bounds, (θ̄u − θ̄b)/2

√
3 the expected adjusted length of the estimated interval, and σ 2 the

average sampling error defined as

σ 2 = (σ 2
u +σ 2

b +σub)

3
,

where σ 2
u = E(θ̂u − θ̄u)2 and σ 2

b = E(θ̂b − θ̄b)
2 are the estimated S.E. of the estimated lower

and upper bounds whereas σub = E[(θ̂b − θ̄b)(θ̂u − θ̄u)] is their estimated covariance. Interest-
ingly enough, these three statistics provide a way to decompose the mean square error uniformly
integrated over the interval [θ̂b, θ̂u]:

MSEI = E

θ̂u∫
θ̂b

(θ − θ0)
2 dθ

θ̂u − θ̂b
= 1

3
E

[
(θ̂u − θ0)

3 − (θ̂b − θ0)
3

θ̂u − θ̂b

]

= 1

3
E[(θ̂u − θ0)

2 + (θ̂b − θ0)
2 + (θ̂b − θ0)(θ̂u − θ0)],
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= (θ̄m − θ0)
2 + 1

3
((θ̄u − θ̄b)/2)2

+1

3
E[(θ̂u − θ̄u)2 + (θ̂b − θ̄b)

2 + (θ̂b − θ̄b)(θ̂u − θ̄u)].

The first term is the square of a “decentring” term (denoted Dec), which can be interpreted as
the familiar bias term. The second term is the square of the “adjusted” length (AL), which can be
interpreted as the specific “uncertainty” due to partial identification instead of point identification.
The third term is an average of S.E. (ASE), which can be interpreted as the familiar variance term.
This decomposition is an adaptation of the classical decomposition of mean square error to the
case where identification is partial.

5.2. Results

We have performed several Monte Carlo experiments using discrete and interval data where the
sample size varies between 100, 200, 500, and 1000 observations. In all experiments, the number
of Monte Carlo replications is equal to 1000. Additional replications do not affect any estimates
(respectively S.E.) by more than a 1% margin of error (respectively 3%). Generally speaking, in
all experiments, the true value of the parameter is within the 95% confidence interval built up
around the lower and upper bounds of the estimates.

Table 1 presents the results of an experiment using interval data by reporting variations of
Dec, AL, ASE, and Root MSEI when both the sample size and the bandwidth used to compute the
denominator of transformation (3) vary. It shows that the estimated intervals can be severely de-
centred for the intercept term, especially when the sample size is small. Increasing the bandwidth

TABLE 1

Simple experiment, interval data: sensitivity to bandwidth. Error decomposition: decentring, adjusted length, and
sampling error

Intercept Variable

No. observations Bandwidth Dec AL ASE RMSEI Dec AL ASE RMSEI

100 1·000 0·554 0·396 0·398 0·789 −0·041 0·353 0·491 0·606
1·500 0·410 0·404 0·325 0·661 −0·068 0·352 0·411 0·545
3·000 0·247 0·401 0·266 0·541 −0·079 0·337 0·327 0·476
5·000 0·182 0·383 0·281 0·508 −0·090 0·321 0·322 0·464

200 1·000 0·358 0·428 0·204 0·594 0·007 0·375 0·267 0·461
1·500 0·218 0·422 0·172 0·505 −0·039 0·367 0·225 0·432
3·000 0·079 0·412 0·144 0·444 −0·101 0·350 0·191 0·412
5·000 0·046 0·410 0·140 0·435 −0·126 0·347 0·202 0·420

500 1·000 0·096 0·411 0·094 0·433 −0·053 0·357 0·122 0·381
1·500 0·025 0·406 0·085 0·415 −0·088 0·349 0·106 0·375
3·000 −0·038 0·400 0·080 0·410 −0·129 0·340 0·104 0·378
5·000 −0·050 0·399 0·080 0·410 −0·138 0·338 0·113 0·383

1000 1·000 −0·006 0·402 0·059 0·406 −0·094 0·345 0·073 0·364
1·500 −0·044 0·399 0·056 0·405 −0·119 0·339 0·067 0·365
3·000 −0·076 0·396 0·055 0·407 −0·146 0·334 0·071 0·372
5·000 −0·082 0·396 0·055 0·408 −0·151 0·334 0·078 0·374

The number of interval values is equal to 10. The simple experiment refers to the case where α = ρ = 0. All details
are reported in the text. Experimental results are based on 1000 replications. Bandwidth refers to the bandwidth that
is used. Dec stands for decentring of the mid-point of the interval. AL is the adjusted length of the interval. ASE is
the sampling variability of bounds as defined in the text. The identity Dec2 +AL2 +ASE2 = RMSEI2 is shown in
the text. RMSEI is the root mean square error integrated over the identified interval.
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Note: Simple experiment. 1000 observations and 100 replicated estimates of the set

FIGURE 1

Estimated sets

decentres interval estimates for the coefficient towards negative numbers though to a much lesser
extent. The mean square error (MSEI) for the intercept decreases with the bandwidth, especially
when the sample size is small. It frequently has a U-shaped form for the coefficient the variable.
We have tried to look for a data-driven choice of the bandwidth by minimizing this quantity, but
this was inconclusive. A larger bandwidth seems to be always preferred. Some further research
is clearly needed on this issue. In the working paper version,8 we report results when other pa-
rameters vary: the degree of non-normality of ε, the degree of endogeneity of x2 and the number
of points in the support of v . It is shown that decentring can be quite severe when the degree of
non-normality of the random shock or the degree of endogeneity of the covariate is large. Inter-
val length is not affected by non-normality, but exhibits some non-monotonic variations with the
amount of endogeneity. Finally, we find that interval length decreases with the number of points
of the support of v, as predicted by the theory. This decrease is not sensitive to sample size.

The projections of the identified set onto one-dimensional intervals may provide a distorted
picture of the bi-dimensional set. For example, when the identified set is stretched along the 45◦
line, the single-dimensional intervals might be very wide even when the total area of the bi-
dimensional set is small. This is why it may be informative to construct the complete identified
region on top of its one-dimensional projections. In our example, the complete bi-dimensional set
can be computed quite easily. Figure 1 shows 100 replications of the complete bi-dimensional es-
timated sets. An interesting feature of these complete sets (i.e. a feature, which is not perceptible
when working with one-dimensional projections) is their “ocular” shape. The kinks on both sides
stem from the deterministic nature of one of the covariates (the intercept). If x2 were discretely
distributed, we would obtain polyhedral sets. Table 2 reports the magnitude of error when we
proxy the complete estimated set by the rectangle given by the projections of the estimated set
on both vertical and horizontal axes. In our specific case, the error is moderate, the surface of the

8. See http://www.idei.fr/doc/wp/2005/magnac.pdf.
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TABLE 2

Approximating true sets by their projections on axes

Proportion

Observations True area Square area Mean S.D.

100 1·57 1·81 0·91 0·41
200 1·40 1·79 0·80 0·12
500 1·41 1·91 0·74 0·05
1000 1·51 2·12 0·71 0·02

Simple experiment. 100 replicated estimates of the set. “True area” is the
mean of the estimated areas of the true sets. “Square area” is the area of
the square given by the estimated intervals on the two axis. “Proportion” is
the ratio of the former over the latter.

true set being around 75% of the area of the rectangle, with some variation according to the size
of the sample.

6. CONCLUSION

In this paper, we explore partial identification of coefficients of binary variable models when
exogenous regressors are discrete or interval valued. We derive bounds for the coefficients and
show that they can be written as moments of the data generating process. We also show that in
the case of interval data, additional information can shrink the identified set. When the unknown
variable is distributed uniformly within intervals, these sets are reduced to one point.

Some additional points are worthy of consideration. First, we do not provide proofs of con-
sistency and asymptotic properties of the estimates of the interval bounds because they would
add little to those presented by Lewbel (2000). The asymptotic variance–covariance matrix of
the bounds can also be derived along similar lines. Moreover, adapting the proofs of Magnac and
Maurin (2007), these estimates are efficient in a semi-parametric sense under certain conditions.
In contrast, constructing confidence sets for the identified set or the true value of the parameter
is more involved (Beresteanu and Molinari, 2006) and is the subject of work in progress.

Generally speaking, the identification results obtained in this paper for the case where data
on v are not continuous may also be used to enhance identification power when the data are ac-
tually continuous. For example, in the case where v is continuous but not “large-support”, one
could use additional measurements or structural priors at discrete points to the left and right of
the actual support in order to achieve partial or point identification. Such additional information
generates a case with mixed discrete and continuous support. It can be analysed by using (simul-
taneously) the proofs developed for the discrete, interval, and continuous settings. An interesting
case arises for a binary variable whose probability of occurrence is known to be monotone in
some regressor v and to vary between 0 and 1 in a known interval of v . School leaving (as a
function of age) is such an example. In such a case, the coefficients of the binary latent model are
partially identified regardless of whether the scheme of observation of v is complete, discrete,
interval valued or continuous. Two extreme cases lead to exact identification: (1) complete and
continuous observation in the interval; (2) complete and interval-data observation when the dis-
tribution of v is uniform within intervals. Nevertheless, other cases are still informative. Finally,
a more complex research question is whether our results can be extended to settings where the
moment condition (L .3) is replaced by stronger conditional mean independence or conditional
independence assumptions. Such assumptions can be analysed as supernumerary moment condi-
tions which are the object of a companion paper (Bontemps et al., 2007).
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APPENDIX A. PROOFS IN SECTION 3

Proof of Theorem 1. Let {Gk (x, z)}k=1,...,K satisfy monotonicity (Gk < Gk+1). It is an ordered set of functions
such that G1 ≥ 0 and G K ≤ 1. Fix β. We first prove that (i) implies (ii).

(Necessity) Assume that there exists a latent random variable ε such that (β, Fε(· | x, z)) satisfies (L .1 − L .3)
and such that {Gk (x, z)}k=1,...,K is its image through transformation (LV ). In the following, we denote v0 = vl and
vK+1 = vu and G0(x, z) ≡ 0 and G K+1(x, z) ≡ 1. By (L .2), the conditional support of ε given (x, z), is included in
(−(vK+1 + xβ),−(v0 + xβ)] and we can write,

∀k ∈ {1, . . . , K +1}, Gk (x, z) =
∫ −(v0+xβ)

−(vk+xβ)
fε(ε | x, z)dε = 1− Fε(−(vk + xβ) | x, z). (A.1)

Put differently, we necessarily have Fε(−(vk + xβ) | x, z) = 1− Gk (x, z), for each k in {0, . . . , K +1} .
Denote sk = (vk +vk−1)/2 and δk = vk+1 − vk−1

2
= sk+1 − sk for all k = 1, . . . , K . Set the transformed variable ỹ

to (
δk y

pk (x, z)
− sK+1) where y = 1{v > −(xβ + ε)}. Integrate ỹ with respect to v (of support {v1, . . . ,vK }) and ε:

E(ỹ | x, z) =
∫
�(ε|x,z)

 K∑
k=1

δk1{vk > −(xβ + ε)}
 f (ε | x, z)dε − sK+1

=
∫
�(ε|x,z)

 K∑
k=1

(sk+1 − sk )1{vk > −(xβ + ε)}
 f (ε | x, z)dε − sK+1.

As the support of w = −(xβ + ε) is included in [v0,vK+1], define an integer function j (w) in {0, . . . , K }, such
that v j (w) ≤ w < v j (w)+1. By construction, vk > w ⇔ k > j (w) and

∑K
k=1(sk+1 − sk )1{vk > w} = (sK+1 − s j (w)+1 ).

Hence, we have

E(ỹ | x, z) =
∫
�(ε|x,z)

(sK+1 − s j (−(xβ+ε))+1 ) f (ε | x, z)dε − sK+1 = −E[s j (−xβ−ε)+1 | x, z]

= xβ + E(ε | x, z)− E[s j (−xβ−ε)+1 + xβ + ε | x, z]

= xβ + E(ε | x, z)−u(x, z) (A.2)

where (recall that w ≡ −(xβ + ε)):
u(x, z) = E(s j (w)+1 −w | x, z).

Bounds on u(x, z) can be obtained using the definition of j (w). Given that v j (w) ≤ w < v j (w)+1, we have :

− v j (w)+1 − v j (w)

2
< s j (w)+1 −w = v j (w)+1 + v j (w)

2
−w ≤ v j (w)+1 − v j (w)

2
.

Hence, we can write using the upper bound and decomposing the support of ε into intervals,

E(s j (w)+1 −w | x, z) =
K+1∑
k=1

∫ −(vk−1+xβ)

−(vk+xβ)
(sk + xβ + ε) f (ε | x, z)dε

≤
K+1∑
k=1

∫ −(vk−1+xβ)

−(vk+xβ)

vk − vk−1

2
f (ε | x, z)dε

=
K+1∑
k=1

[
vk − vk−1

2
(Gk (x, z)− Gk−1(x, z))

]
= �(x, z)

where in the last line, we used equation (A.1). For the lower bound, a similar proof yields:

−�(x, z) < u(x, z) ≤ �(x, z).

Since G K+1(x, z) = 1 and G0(x, z) = 0, we have �(x, z) ≥ min
k

(
vk−vk−1

2 ), meaning that �(x, z) > 0 and that

I (x, z) is non-empty. It finishes the proof that statement (i) implies statement (ii) since equation (A.2) implies
equation (2).
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(Sufficiency) Conversely, let us prove that statement (ii) implies statement (i). We assume that there exists u(x, z)
in I (x, z) = (−�(x, z),�(x, z)] such that equation (2) holds true and we construct a distribution function Fε(· | x, z)
satisfying (L .1− L .3) such that the image of (β, Fε(· | x, z)) through (LV ) is {Gk (x, z)}k=1,...,K .

First, let λ a random variable whose support is (0,1], whose conditional density given (v, x, z) is independent of v

(a.e. Fx,z ) and is such that:

E(λ | x, z) = (u(x, z)+�(x, z))/(2�(x, z)). (A.3)

As this expectation lies between 0 and 1, it is always possible to find such a random variable. Second, let κ a discrete
random variable whose support is {1, . . . , K + 1} and whose conditional distribution given (v, x, z) is independent of v

and is given using:

Pr(κ = k | x, z) = Gk (x, z)− Gk−1(x, z) (A.4)

where we keep on denoting G K+1(x, z) ≡ 1 and G0(x, z) ≡ 0. For any k ∈ {1, . . . , K +1}, consider K random variables,
say ε(λ,k) which are constructed from λ by

ε(λ,k) = −xβ −λvk−1 − (1−λ)vk .

Given that λ > 0, the support of ε(λ,k) is (−xβ − vk ,−xβ − vk−1]. Finally, consider the random variable

ε = ε(λ,κ), (A.5)

whose support is (−xβ − vK ,−xβ − v1] and which is independent of v (because both λ and κ are). It therefore satis-
fies (L .1) and (L .2). Furthermore, because of (A.4), the image of (β, Fε(· | x, z)) through (LV ) is {Gk (x, z)}k=1,...,K
because these functions satisfy equation (A.1). The last condition to prove is (L .3). Consider, for almost any (x, z),∫

�(ε|x,z)

(s j (−xβ−ε)+1 + xβ + ε) f (ε | x, z)dε

=
K+1∑
k=1

(∫ −xβ−vk−1

−xβ−vk

(
vk + vk−1

2
+ xβ + ε

)
f (ε | x, z,κ = k)dε

)

=
K+1∑
k=1

E

(
vk + vk−1

2
−λvk−1 − (1−λ)vk | x, z

)
(G(vk , x, z)− G(vk−1, x, z))

=
K+1∑
k=1

E(λ−1/2 | x, z).(vk − vk−1).(Gk (x, z)− Gk−1(x, z))

= (u(x, z)/(2�(x, z)))(2�(x, z)) = u(x, z),

where the third line is the consequence of the definition of ε and the last line is using equation (A.3). Therefore, equation
(A.2) holds and:

E(z′ ỹ) = E(z′x)β + E(z′ε)− E(z′u(x, z)).

Equation (2) implies E(z′ε) = 0, that is (L .3), which finishes the proof of Theorem 1. ‖

Remark A1. It is worth emphasizing that this proof also provides a characterization of the domain of observa-
tionally equivalent distribution functions Fε , that is, the set of random variables ε such that there exists β with (β, Fε)

satisfying conditions (L .1− L .3) and generating {Gk (x, z)}k=1,...,K . We have

The two following statements are equivalent,

(i) there exists a vector of parameter β such that the latent model (β, Fε(· | x, z)) verifies conditions L and such that
{Gk (x, z)}k=1,...,K is its image through the transformation (LV ),

(ii) there exist two independent random variables (λ,κ), conditional on (x, z) such that the support of λ is (0,1], the
support of κis {2, . . . , K }, equation (A.4) holds and such that

ε = −xβ −λvκ−1 − (1−λ)vκ

where β verifies
E(z′(xβ − ỹ) = E(z′�(x, z)(2λ−1)).
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Proof of Corollary 3. For the sake of clarity, we start with the exogenous case where z = x . Denote x p the last

variable in x , x−p all the other variables (i.e. x = (x−p, x p)). Consider any β ∈ B and β∗ = (E(x ′x)
)−1 E(x ′ ỹ).

There exists a function u(x) in (−�(x),�(x)] such that β −β∗ = (E(x ′x)
)−1 E(x ′u(x)), which is also the result of the

regression of u(x) on x .
Denote the residual of the projection of x p onto the other components x−p as x̃ p :

x̃ p = x p − x−p

(
E(x ′−px−p)

)−1
E(x ′−p x p).

Applying the principle of Frish–Waugh, we have

βp −β∗
p =

(
E((x̃ p)2)

)−1
E (̃x pu(x)).

Since x̃ p is a scalar, the maximum (respectively minimum) of E (̃x pu(x)) when u(x, z) varies in (−�(x),�(x)] is
obtained by setting u(x) = �(x)1{x̃ p > 0}−�(x)1{x̃ p ≤ 0} (respectively u(x) = −�(x)1{x̃ p > 0} +�(x)1{x̃ p ≤ 0}).
Hence E (̃x pu(x)) lies between −E(|x̃ p |�(x)) and E(|x̃ p |�(x)) and the difference βp −β∗

p varies in(
− E(|x̃ p |�(x))

E(x̃ p
2)

,
E(|x̃ p |�(x))

E(x̃ p
2)

]
.

To show the reciprocal, consider any βp in(
β∗

p − E(|x̃ p |�(x))

E(x̃ p
2)

; β∗
p + E(|x̃ p |�(x))

E(x̃ p
2)

]
.

Denote

λ = E(x̃ p
2)

E(|x̃ p |�(x))
(βp −β∗

p) ∈ (−1,1] .

Consider u(x) = λ�(x) when x̃ p > 0 and u(x) = −λ�(x) otherwise, which means that

E (̃x pu(x))

E(x̃ p
2)

= (βp −β∗
p).

Function u(x) takes its values in (−�(x),�(x)] and therefore satisfies point (ii) of Theorem 1. Thus, there exists
β ∈ B such that its last component is βp .

The adaptation to the general IV case uses the generalized transformation

x̃ p = z(E(z′z))−1 E(z′x p)− z(E(z′z))−1 E(z′x−p)
[

E(x ′−pz)(E(z′z))−1 E(z′x−p)
]−1

E(x ′−pz)(E(z′z))−1 E(z′x p).

Generally speaking, the estimation of Bp requires the estimation of E(|x̃ p |�(x, z)). Given this fact, it is worth
emphasizing that �(x, z) can be rewritten as E(ỹ� | x, z) where

ỹ� =
K∑

K=1

[
(vk − vk−1 − (vk+1 − vk ))

2pk (x, z)
1(v = vk )

]
y + vK+1 − vK

2
.

Specifically,

�(x, z) = (v1 − v0)

2
G1(x, z)+

K∑
k=2

[
(vk − vk−1)

2
(Gk (x, z)− Gk−1(x, z))

]
+ (vK+1 − vK )

2
(1− G K (x, z))

=
K∑

k=1

(vk − vk−1 − (vk+1 − vk ))

2
Gk (x, z)+ vK+1 − vK

2

= E

 K∑
k=1

1(v = vk )
(vk − vk−1 − (vk+1 − vk ))

2pk (x, z)

 y + vK+1 − vK

2
| x, z

= E(ỹ� | x, z).

Using these notations, E(|x̃ p |�(x, z)) can be rewritten E(|x̃ p |ỹ�), which means that the estimation of the upper
and lower bounds of Bp only requires (1) the construction of the transform ỹ�, (2) an estimation of the residual x̃ p and
(3) the linear regression of ỹ� on |x̃ p |. ‖
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APPENDIX B. PROOFS IN SECTION 4

Proof of Theorem 4. Consider a vector of parameters β and a conditional probability distribution Pr(y = 1 |
v∗, x, z) (denoted Gv∗ (x, z)) which is non-decreasing in v∗.

(Necessity) We prove that (i) implies (ii). Denote, Fv (· | x, z,v∗), and Fε(· | x, z), two conditional distribution
functions satisfying (i). By Assumption ID(ii), Fv (· | x, z,v∗) is absolutely continuous and its density function is denoted
fv . By assumption Theorem 4 (i), (β, Fε(· | x, z)) satisfies condition (L1∗), (L2), and (L3) and {Gk (x, z)}k=1,...,K−1 is
its image through transformation (LV ).

For the sake of clarity, set w = −(xβ +ε) so that y = 1{v > w} and the support of w is a subset of [v1,vK ) by (L .2).
The variable w is conditionally (on (x, z)) independent of v and v∗ and the corresponding conditional distribution is

Fw(w | x, z) = 1− Fε(−(xβ +w) | x, z).

The conditional probability of occurrence of y = 1 in the k-th interval (v∗ = k in {1, . . . , K −1}) is

Gk (x, z) =
∫ vk+1

vk

E(1{v > w | v,v∗ = k, x, z) fv (v | k, x, z)dv,

which yields the convolution equation:

Gk (x, z) =
∫ vk+1

vk

Fw(v | x, z) fv (v | k, x, z)dv. (B.1)

Note that this condition implies

Fw(vk | x, z) ≤ Gk (x, z) ≤ Fw(vk+1 | x, z) (B.2)

with a strict inequality on the right if Fw(vk | x, z) < Fw(vk+1 | x, z) because Fv is absolutely continuous and Fw is
continuous on the right (CADLAG).

To prove (4), write E(ȳ | x, z) as∑
v∗=1,..,K−1

∫
�(v|v∗,x,z)

∫
�(w|v∗,v,x,z)

[ȳ.pv∗ (x, z). fv (v | v∗, x, z)dvd Fw(w | v∗,v, x, z)].

Using the definition of ȳ, the term pv∗ (x, z) cancels out and using condition (L .1∗), the integral over dw on the one
hand, and the sum and other integral on the other hand, can be permuted:

∫
�(w|x,z)

 ∑
δ(v∗)

v∗∈{1,...,K−1}

∫
�(v|v∗,x,z)

1(v > w)) fv (v | v∗, x, z)dv

d Fw(w | x, z)− vK . (B.3)

Evaluate first the inner integral with respect to v. As the support of w is included in [v1,vK ), we can define for any
value of w in its support, an integer function j (w) in {1, . . . , K −1}, such that v j (w) ≤ w < v j (w)+1. Distinguish three
cases. First, when v∗ < j (w), the whole conditional support of v lies below w and∫

�(v|v∗,x,z)

1(v > w) fv (v | v∗, x, z)dv = 0,

while when v∗ > j (w), the whole conditional support of v lies strictly above w and thus∫
�(v|v∗,x,z)

1(v > w) fv (v | v∗, x, z)dv = 1.

Last, when v∗ = j (w), ∫
�(v|v∗,x,z)

1(v > w) fv (v | v∗, x, z)dv = 1− Fv (w | v∗, x, z).

Summing over values of v∗,∑
v∗∈{1,...,K−1}

δ(v∗)

∫
�(v|v∗,x,z)

1(v > w) fv (v | v∗, x, z)dv = −Fv (w | v j (w), x, z)(v j (w)+1 − v j (w))+ vK − v j (w).
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Replacing in equation (B.3) and integrating w.r.t. w, implies that

E(ȳ | x, z) = −E(w | x, z)−u∗(x, z) = xβ + E(ε | x, z)−u∗(x, z). (B.4)

where

u∗(x, z) =
∫
�(w|x,z)

(Fv (w | v j (w), x, z)(v j (w)+1 − v j (w))+ v j (w) −w)d Fw(w | x, z).

Integrating equation (B.4) with respect to x, z and using condition (L .3) yields condition (4).
To finish the proof, upper and lower bounds for u∗(x, z) are now provided. Write,

u∗(x, z) =
K−1∑
k=1

(vk+1 − vk )φk (x, z) (B.5)

where

φk (x, z) =
∫ vk+1

vk

(
Fv (w | k, x, z)+ vk −w

vk+1 − vk

)
d Fw(w | x, z). (B.6)

Using integration by parts, the first term is

φk (x, z) =
∫ vk+1

vk

(
1

vk+1 − vk
− fv (w | k, x, z)

)
Fw(w | x, z)dw,

which yields, using the convolution equation (B.1),

φk (x, z) = −Gk (x, z)+
∫ vk+1

vk

Fw(w | x, z)

vk+1 − vk
dw.

Furthermore, using equation (B.2), implies

Gk−1(x, z)− Gk (x, z) ≤ φk (x, z) ≤ Gk+1(x, z)− Gk (x, z)

where at least one inequality on the right and one inequality on the left are strict, since there exists at least one k such that
Fw(w = −(xβ + vk+1) | x, z)− Fw(w = −(xβ + vk ) | x, z) > 0. Therefore

�∗(x, z) < u∗(x, z) < �
∗
(x, z)

where the definitions of �
∗
(x, z) and �∗(x, z) correspond to those given in the body of the theorem.

(Sufficiency) We now prove that (ii) implies (i). Denote u∗(x, z) in (�∗(x, z),�
∗
(x, z)) such that

E(z′(xβ − ȳ)) = E(z′u∗(x, z)).

We are going to prove that there exists a distribution function of w = −(xβ +ε) and a distribution function of v such
that (β, Fε(· | x, z)) satisfies (L .1∗, L .2, L .3) and Gv∗ (x, z) is the image of (β, Fε(· | x, z)) through the transformation
(LV ).

To begin with, we proceed in three steps to construct w. First, we choose a sequence of functions Hk (x, z) such that
H1 = 0, HK = 1, and such that:

Hk (x, z) ≤ Gk (x, z) ≤ Hk+1(x, z), for k ∈ {1, . . . , K −1} (B.7)

where at least one inequality on the right is strict and

K−1∑
k=1

(vk+1 − vk )(Hk (x, z)− Gk (x, z)) < u∗(x, z) <

K−1∑
k=1

(vk+1 − vk )(Hk+1(x, z)− Gk (x, z)).

Consider

θ(x, z) >
u∗(x, z)

�∗(x, z)
, 1− θ(x, z) >

u∗(x, z)

�
∗
(x, z)

,
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where, for instance, θ(x, z) = �(x, z)−u∗(x, z)

�(x, z)−�(x, z)
. By construction θ(x, z) ∈ (0,1] and one checks that

Hk (x, z) = θ(x, z)Gk−1(x, z)+ (1− θ(x, z))Gk (x, z)

satisfies the two previous conditions. Generally speaking, the closer u∗(x, z) is from the lower bound �∗(x, z), the closer
is Hk to Gk−1 and the closer u∗(x, z) is from the upper bound �

∗
(x, z), the closer is Hk to Gk .

Second, we consider κ , a discrete random variable, whose support is {1, . . . , K − 1}, which is independent of v∗
(a.e. Fx,z ) and whose conditional on (x, z) distribution is

Pr(κ = k | x, z) = Hk+1(x, z)− Hk (x, z). (B.8)

Third, we consider λ a random variable whose support is (0,1), which is independent of v∗ (a.e. Fx,z ), and whose
conditional (on (x, z)) expectation is

E(λ | x, z) =
∑K−1

k=1 (vk+1 − vk )(Hk+1(x, z)− Gk (x, z))−u∗(x, z)∑K−1
k=1 (vk+1 − vk )(Hk+1(x, z)− Hk (x, z))

. (B.9)

For instance, λ can be chosen discrete with a mass point on

λ0(x, z) =
∑K−1

k=1 (vk+1 − vk )(Hk+1(x, z)− Gk (x, z))−u∗(x, z)∑K−1
k=1 (vk+1 − vk )(Hk+1(x, z)− Hk (x, z))

.

Given the constraints on the Hk (x, z) and given that u∗(x, z) is in in (�∗(x, z),�
∗
(x, z)), λ0(x, z) belongs to (0,1).

Within this framework, we can define w as

w = (1−λ)vκ +λvκ+1

By construction, the support of w is [v1,vK ) and w is independent of v∗ conditionally on (x, z) because both λ and
κ are. Hence, ε = −(xβ +w) satisfies (L .1) and (L .2).

To construct v , we first introduce a random variable η whose support is [0,1), which is absolutely continuous, which
is defined conditionally on (k, x, z), which is independent of λ and such that

∫ 1

0
Fλ(η | x, z). fη(η | k, x, z)dη = Gk (x, z)− Hk (x, z)

Hk+1(x, z)− Hk (x, z)
∈ [0,1)

where Fλ(· | x, z) denotes the distribution of λ conditional on (x, z).
For instance, when λ is chosen discrete with a mass point on λ0(x, z), we simply have to choose η such that

Fη(λ0(x, z) | x, z) = Hk+1(x, z)− Gk (x, z)

Hk+1(x, z)− Hk (x, z)
.

Now, define v as

v = vk + (vk+1 − vk )η.

Let us now prove that the image of (β, Fw(· | x, z)) through (LV ) is Gv∗ (x, z) because it satisfies equation (B.1):∫ vk+1

vk

Fw(v | x, z). fv (v | k, x, z)dv = Hk (x, z)

+(Hk+1(x, z)− Hk (x, z)).
∫ vk+1

vk

Pr(w = (1−λ)vk +λvk+1 ≤ v | x, z). fv (v | k, x, z)dv = Hk (x, z)

+(Hk+1(x, z)− Hk (x, z)).
∫ 1

0
Pr(λ ≤ η | x, z). fη(η | k, x, z)dη = Gk (x, z).
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The last condition to prove is (L .3). Rewrite equation (B.6), for almost any (x, z),

φk (x, z) = −Gk (x, z)+
∫ vk+1

vk

Fw(w | x, z)

vk+1 − vk
dw

= −Gk (x, z)+ Hk+1(x, z)− (Hk+1(x, z)− Hk (x, z))E(λ | x, z).

Therefore,

K−1∑
k=1

(vk+1 − vk )φk (x, z) =
K−1∑
k=1

(vk+1 − vk )(Hk+1(x, z)− Gk (x, z))

−
K−1∑
k=1

(vk+1 − vk )(Hk+1(x, z)− Hk (x, z))E(λ | x, z) = u∗(x, z)

using equation (B.9). Plugging equation (4) in equation (B.4) yields E(z′ε) = 0 that is condition (L .3). ‖
Proof of Theorem 5. We use large parts of the proof of Theorem 4.

(Necessity) Same as the proof of Theorem 4 until equation (B.6) that we rewrite as

φk (x, z) =
∫ vk+1

vk

(�(v | k, x, z)− v − vk

vk+1 − vk
)d Fw(v | x, z).

First

φk (x, z) =
∫ vk+1

vk

(1−
v−vk

vk+1−vk

�(v | k, x, z)
)�(v | k, x, z)d Fw(v | x, z)

≤ sup
v∈(vk ,vk+1)

(1−
v−vk

vk+1−vk

�(v | k, x, z)
)

∫ vk+1

vk

�(v | k, x, z)d Fw(v | x, z)

= ξU
k (x, z)

∫ vk+1

vk

�(v | k, x, z)d Fw(v | x, z)

where ξU
k (x, z) is defined in the text. Equation (B.1) delivers∫ vk+1

vk

�(v | k, x, z)d Fw(v | x, z) =
∫ vk+1

vk

d[�(v | k, x, z)Fw(v | x, z)]−
∫ vk+1

vk

Fw(v | x, z)d�(v | k, x, z)

=
∫ vk+1

vk

d[�(v | k, x, z)Fw(v | x, z)]− Gk (x, z).

Hence, using Fw(vk+1 | x, z) ≤ Gk+1(x, z), we have,

φk (x, z) ≤ ξU
k (x, z).(Gk+1(x, z)− Gk (x, z)).

The derivation of the lower bound follows the same logic:

φk (x, z) ≥ inf
v∈(vk ,vk+1)

−1−
v−vk+1
vk+1−vk

1−�(v | k, x, z)

∫ vk+1

vk

(1−�(v | k, x, z))d Fw(v | x, z)

≥ ξ L
k (x, z)

[∫ vk+1

vk

d[(1−�(v | k, x, z))Fw(v | x, z)]+ Gk (x, z)

]
,

c© 2008 The Review of Economic Studies Limited



MAGNAC & MAURIN IDENTIFICATION IN MONOTONE BINARY MODELS 861

where ξ L
k (x, z) is defined in the text. Hence, using Fw(vk | x, z) ≥ Gk (x, z), we have

φk (x, z) ≥ ξ L
k (x, z)(Gk (x, z)− Gk−1(x, z)).

Therefore, using the definition of u∗(x, z) in equation (B.5), we have

�∗
�(x, z) ≤ u∗(x, z) ≤ �

∗
�(x, z) (B.10)

where �∗
�(x, z) and �

∗
�(x, z) are defined in the text.

(Sufficiency) We now prove that (ii) implies (i). We assume that there exists u∗(x, z) in [�∗
�(x, z),�

∗
�(x, z)] such

that
E(z′(xβ − ȳ)) = E(z′u∗(x, z)).

Under this assumption, we are going to prove that there exists a distribution function of the random term ε such that
(β, Fε(· | x, z)) satisfies (L .1∗, L .2, L .3) and Gv∗ (x, z) is the image of (β, Fε(· | x, z)) through the transformation (LV ),

when the distribution function of the special regressor v is �(v | k, x, z). As in the proof of Theorem 4, we proceed by
construction in three steps.

First, choose a sequence of functions Hk (x, z) such that H1 = 0, HK = 1, and for any k in {1, . . . , K −1} such as

Hk (x, z) ≤ Gk (x, z) < Hk+1(x, z) (B.11)

and such as

K−1∑
k=1

(vk+1 − vk )ξ L
k (x, z)(Gk (x, z)− Hk (x, z)) ≤ u∗(x, z) ≤

K−1∑
k=1

(vk+1 − vk )ξU
k (x, z)(Hk+1(x, z)− Gk (x, z)).

If ξ L
k (x, z) < 0 and ξU

k (x, z) > 0, the closer u∗(x, z) is from the lower bound �∗
�(x, z), the closer is Hk to Gk−1,

and the closer u∗(x, z) is from the upper bound �
∗
�(x, z), the closer is Hk to Gk .

Decompose now u∗(x, z) into φ∗
k (x, z) such that

u∗(x, z) =
K−1∑
k=1

(vk+1 − vk )φ∗
k (x, z)

and such that the bounds on u∗ can be translated into

ξ L
k (x, z)(Gk (x, z)− Hk (x, z)) ≤ φ∗

k (x, z) ≤ ξU
k (x, z)(Hk+1(x, z)− Gk (x, z)). (B.12)

There are many decompositions of this type. Choose one.
Second, consider κ a discrete random variable whose support is {1, . . . , K − 1}, which is independent of v∗ (a.e.

Fx,z ) and whose conditional on (x, z) distribution is

Pr(κ = k | x, z) = Hk+1(x, z)− Hk (x, z). (B.13)

Consider also K − 1 random variable λk whose support is (0,1), which are independent of v∗ (a.e. Fx,z ) and whose
conditional (on (x, z)) expectation is

E(λk | x, z) = Hk+1(x, z)− Gk (x, z)−φ∗
k (x, z)

Hk+1(x, z)− Hk (x, z)
(B.14)

and such that ∫ 1

0
(�v (λvk + (1−λ)vk+1 | k, x, z)− v − vk

vk+1 − vk
)d Fλk (λ | x, z) = φ∗

k (x, z)

Hk+1(x, z)− Hk (x, z)
.

Given constraints (B.11) and (B.12), it is always possible to construct such a random variable.
Finally, define the random variable

w = (1−λ)vκ +λvκ+1.

By construction, the support of w is [v1,vK ) and w is independent of v∗ conditionally on (x, z) because all λks and
κ are. Hence, ε = −(xβ +w) satisfies (L .1) and (L .2).

Finish the proof as in Theorem 4. ‖
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Proof of Corollary 6. (Necessity) Let the conditional distribution of v , �0, be piecewise uniform by intervals,
v∗ = k. Then, for any k = 1, . . . , K −1, ξU

k (x, z) = ξ L
k (x, z) = 0. Using Theorem 5 yields that �∗

�(x, z) = �
∗
�(x, z) = 0

and therefore u∗(x, z) = 0. Identification of β is exact and its value is given by the moment condition (4).
(Sufficiency) By contraposition assume that there exists k ∈ {1, . . . , K −1}, a measurable set A included in [vk ,vk+1)

with positive Lebesgue measure and a measurable set S of elements (x, z) with positive probability Fx,z(S) > 0 such
that �(v | k, x, z) is different from a uniform distribution function on A for any (x, z) in S. Because � is absolutely
continuous (ID.ii), and for the sake of simplicity, assume that

∀v ∈ A; ∀(x, z) ∈ S; �(v | k, x, z)− v − vk

vk+1 − vk
> 0.

Because ξU
k (x, z) > 0, we can always construct a function u∗

1(x, z), which is such that E(z′u∗
1(x, z)) is strictly

positive on S and satisfies the conditions of Theorem 5. The moment condition (4) is then used to construct parameter
β1. It implies that the identified set B contains at least two different parameters β, that is, the one corresponding to
u∗(x, z) = 0 and the one corresponding to u∗

1(x, z) (and in fact the whole real line between them as B is convex). ‖
Proof of Corollary 9.
Same as Corollary 2 except that the maximization of E(x̃ pu∗(x, z)) is obtained when

u∗(x, z) = 1{̃x p ≤ 0}�∗(x, z)+1{̃x p > 0}�∗
(x, z)

and the minimization of such an expression is obtained when

u∗(x, z) = 1{̃x p > 0}�∗(x, z)+1{̃x p ≤ 0}�∗
(x, z).

Furthermore, we have

�̄∗(x, z) =
K−1∑
k=1

[
(vk+1 − vk )(Gk+1(x, z)− Gk (x, z))

]

= −(v2 − v1)G1(x, z)+
K−1∑
k=2

(vk − vk−1 − (vk+1 − vk ))Gk (x, z)+ vK − vK−1

=
K−1∑
k=1

(vk − vk−1 − (vk+1 − vk ))E(y | v = vk , x, z)+ vK − vK−1

= E

(
θU,k .y

pk (x, z)
| x, z

)
+ vK − vK−1 = E(ȳU | x, z)

where by convention v0 = v1. Similarly

�∗(x, z) =
K−1∑
k=1

[
(vk+1 − vk )(Gk−1(x, z)− Gk (x, z))

]

=
K−2∑
k=1

(vk+2 − vk+1 − (vk+1 − vk ))Gk (x, z)− (vK − vK−1)G K−1(x, z)

=
K−1∑
k=1

(vk+2 − vk+1 − (vk+1 − vk ))E(y | v = vk , x, z)

= E(
θL ,k .y

pk (x, z)
| x, z) = E(ȳL | x, z)

if the convention vK+1 = vK is adopted. ‖

B.1. Design of Monte Carlo experiments

The construction of the special regressor v , the covariate x2, the instrument z and the random shock ε proceeds in several
steps. To begin with, we consider four random variables : e1 is uniform on [0,1], e2 and e3 are zero mean unit variance
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normal variates, and e4 is a mixture of a normal variate N (−0·3,0·91) using a weight of 0·75 and a normal variate
N (0·9,0·19) using a weight of 0·25. Using these notations, we define

η = 2e2 +αe4, x2 = e1 + e4

ε = ρ(e1 −0·5)+ e3, z = e4.

where α is a parameter that makes the random shock a non-normal variate and ρ is a parameter that renders x2 en-
dogenous. The case where α = ρ = 0 (respectively α = ρ = 1) roughly corresponds to what Lewbel calls the simple
(respectively messy) design.

Regressor v is defined by truncating η to the 95% symmetric interval around 0, denoted [v1,vK ]. To comply with
assumption L .2, we then truncate x2 +ε so that 1+ x2 +ε+ v1 < 0 and 1+ x2 +ε+ vK > 0. We construct the censored
K −1 intervals using

v∗ = k if v ∈ [vk ,vk+1).
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