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Abstract

We introduce a methodology to estimate the determinants of the forma-
tion of technology diffusion networks from the patterns of technology adop-
tion. We apply this methodology to wind energy, which is one of the key
technologies in climate change mitigation. Our results emphasize that, in
particular, long-term relationships as measured by economic integration are
key determinants of technological diffusion. Specific support measures are
less relevant, at least to explain the extensive margin of diffusion. Our re-
sults also highlight that the scope of technological diffusion is much broader
than what is suggested by the consideration of CDM projects alone, which
are particularly focused on China and India. Finally, the network of tech-
nological diffusion inferred from our approach highlights the central role of
European countries in the diffusion process and the absence of large hubs
among developing countries.

JEL codes: O33, Q54, Q55, C61, C63
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1 Introduction

The role of technology diffusion has been strongly emphasized as a necessary
condition for efficient mitigation and, more recently, as a key element in the
design of climate clubs. Such clubs would bring together countries willing to
implement ambitious climate policies if associated with technological, trade or
financial advantages and are seen as a potential game-changer in climate policy
(Nordhaus, 2015; Grubb et al., 2015; Hovi et al., 2016; Keohane and Victor, 2016).

In this perspective, two main issues relate specifically to technological diffusion.
First, technological diffusion is not a simple bilateral process but might involve
strong network effects and thus relates to the global structure of a potential
climate club. Second, technological diffusion is eventually a firm-level decision
and can only be indirectly influenced by policy. Thus, assessing the potential
impact of policy on technological diffusion amounts to estimating the impact
of policy on a network formation process. This is clearly beyond the realm of
conventional integrated assessment models, which do not account for complex
network interactions and cannot be estimated.

In this paper, we propose an innovative approach to the problem, which con-
sists in representing technology diffusion as a stochastic epidemic process on a
network of countries and to estimate the determinants of network formation by
relating observed patterns of technology adoption and policy measures imple-
mented domestically, bilaterally or multilaterally. This approach relates to recent
contributions in computer science that have built on information transmission
data to infer the structure of social networks (Gomez Rodriguez et al., 2010).
It can also be seen as a methodology to estimate the network distance between
countries in models of international trade à la Chaney (2014).

We then use this methodology to infer the wind technology diffusion network
and its policy determinants. Therefore, we build on a comprehensive dataset
of all wind turbines installed globally since 1983 and a unique dataset of wind
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policy support measures that we have built through a comprehensive analysis
of the International Renewable Energy Agency (IRENA) data. The focus on
wind is motivated by the fact that it is one of the fastest growing renewable
energy sources, both in terms of volume and technological progress. At the end of
2017, installed capacity of wind energy reached almost 540 GW, with the largest
capacities installed in China, the US, Germany, India, Spain, UK, France, Brazil
and Canada (Global Wind Energy Council, 2018). Most of the growth in installed
capacity currently occurs in countries outside of the OECD. It is thus particularly
important in view of climate change mitigation that the latest vintage of wind
turbines diffuses rapidly at the global scale.

Hence the paper provides both a methodological and an empirical contribution.
From the methodological perspective, it partly bridges the literature on tech-
nological diffusion and the econometrics of network formation and thus allows
to account for both the role of interrelations and of country-specific factors (as
source or as target) in technology diffusion processes. From the empirical per-
spective, wind is representative of the technologies whose diffusion ought to be
fostered by a climate club. Analyzing the policy determinants of this diffusion
provides interesting insights on the potential design of the club. In this respect,
our results emphasize that long-term economic and trade relationships, as mea-
sured in particular by economic integration, are key determinants of technological
diffusion. Specific support measures for certain technologies seem less relevant for
the diffusion per se, although they might play a crucial role from an industrial
perspective, i.e., in the scaling up of a technology to reach relevant market size.

The remainder of the paper is organized as follows. Section 2 surveys the related
literature. Section 3 introduces the methodology. Section 4 describes the appli-
cation to wind energy and highlights the structure of the wind diffusion network
and the policy determinants of its formation. Section 5 concludes.
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2 Related literature

This paper relates and contributes to the growing literature on the adoption and
diffusion of climate-friendly technologies, as well as the network literature on
technological diffusion. Although complex system models have been employed to
study various climate change related areas (see e.g., Balint et al., 2017, for a recent
survey), diffusion dynamics and the role of networks has received less attention
in the literature on green innovation. In this respect, since the diffusion process
involves the spread of an innovation among agents which can depend on their
interactions and various socio-economic determinants, it is extremely relevant to
take a network perspective (cf. ibid; Rogers, 2010; Allan et al., 2014). The main
objective of this paper is precisely to further bridge these areas.

The existing literature on technological diffusion mainly adresses the issue of
adoption from the host country perspective, i.e, it focuses on adoption (cf. Popp
et al., 2011; Narbel, 2013, and references therein). In particular, Popp et al.
(2011) study the investment in renewable energy capacity (measured as kW per
thousand inhabitants) for wind, solar photovoltaic, geothermal and electricity
produced from waste and biomass in 26 OECD countries from 1991 to 2004.
Using feasible generalized least squares, they estimate the effect of innovative
activity (knowledge stock proxied by patents), policy measures (the main one
being a binary variable for whether a country has ratified the Kyoto Protocol),
and other control variables (e.g. GDP per capita) on the investment per capita
in capacity of renewable energy installed. In general, the previous literature has
emphasized the role of regulation and policy as the primary driver of the adoption
of green technologies. In fact, it is found that environmental policy has a much
larger impact on renewable energy investment than other country characteristics
such as GDP per capita and the knowledge stock.

In addition, data from the Clean Development Mechanism (under which devel-
oped countries can contribute to GHG emission reduction through projects imple-
mented in developing countries) have been used in a number of studies focusing
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on developing countries. For example, Lema and Lema (2013) analyze 14 devel-
oping countries that were by April 2009 hosts to almost 200 individual CDM wind
projects, where India and China are the major host countries (as is the case more
generally), going more in-depth into the underlying adoption mechanisms. It is
found that a greater variety of mechanisms exist than those commonly assumed,
which are imports (trade) and foreign direct investment. Although these latter
dominate for the other countries among which were Argentina and Brazil, they
are not the most important for China and India. For example, only China has
wind CDM projects supplied by local companies using licensing arrangements,
and this mechanism accounts for almost a quarter of the wind projects in all
countries (ibid, p. 8).

More recently, the literature has approached the notion of technology transfer by
focusing on bilateral relations between countries (e.g., see Dechezleprêtre et al.,
2008; Glachant et al., 2013; De Coninck and Sagar, 2015, and references therein).
In this perspective, it builds on a range of proxy measures to characterize trans-
fers (Johnstone et al., 2011). A first range of contribution relies on patent data.
Specifically related to wind energy, Dechezleprêtre and Glachant (2014) investi-
gate the influence of domestic and foreign demand-pull policies across 28 OECD
countries from 1991 to 2008 on wind technology transfer using a Poisson model.
In particular, the dependent variable specified as the number of patents granted
in wind power technology in country i that are filed in country j in year t proxies
cross-border technology transfer/diffusion. As in Popp et al. (2011), they also
emphasize that wind energy deployment is largely driven by public policy sup-
port. Nevertheless, they do not estimate the specific impact of one component of
the policy mix (e.g. feed-in tariffs or renewable portfolio standards), but rather
use annual wind power generation in each country as a proxy measure of the
stringency of the portfolio of demand-pull policies.

Relatedly, using CDM data, Dolšak and Crandall (2013) employ logistic regres-
sion to investigate the influence of host-country characteristics (e.g., institutions)
and dyadic characteristics (e.g., former colonial ties) on CDM location decisions
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during 2004 to 2006. Among key findings is that bilateral familiarity determi-
nants (e.g., bilateral trade and colonial relationship) have a significant impact
on CDM location decisions. In fact, these prior and current interactions with
the host country appear to be much more important than the overall quality of
institutions, though UNFCCC specific domestic institutions (e.g., whether the
host country has submitted a National Communication to the Secretariat of the
UNFCCC) seem to be influential to CDM location decisions. Similarly, but in
addition to host-country characteristics including those of investor (home) coun-
tries, Dinar et al. (2011) find that strong trade relations positively influence the
level of cooperation between hosts and investors.

Two caveats of the CDM approach is the sole focus on the relationship between
developed and developing countries and the fact, emphasized by (Dechezleprêtre
et al., 2008), that not all CDM projects encompass actual technology transfers.
More broadly, the existing literature adopts a bilateral rather than a network-
based perspective and thus discards the role of indirect connections in the diffusion
process. A first contribution including a network perspective is Halleck Vega
and Mandel (2018), which uses wind installation data to infer the network of
technological diffusion. However, this latter contribution remains silent about
the policy determinants of network formation.

The present paper aims to overcome this shortcoming and thus bridge to fron-
tier research on the network structure of international trade and the economet-
rics of network formation (e.g. Hidalgo and Hausmann, 2009; Chaney, 2014;
De Paula, 2015; Bramoullé et al., 2016; Chandrasekhar, 2016). In fact, the micro-
foundations of our approach are related to the role of exporting firms in the
diffusion of technologies. In this respect, a recent contribution by Chaney (2014)
proposes a model of the formation of international trade relationships in which
firms sequentially enter new markets following their geographical proximity. This
model is a particular case of the model of network formation introduced by Jack-
son and Rogers (2007) in which agents on a social network meet preferentially the
connections of their existing connections (friends of friends). In Chaney (2014),
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the underlying notion of connection between countries is based purely on geo-
graphical distance. Moreover, the diffusion process is mainly supply driven as
the firm is the only agent involved in the decision to enter a new market, and, as
in the case of the bilateral CDM framework, the decisions are not influenced by
others’ decisions (i.e., there are no explicit inter-firm interactions).

However, in network-based models of technology diffusion, such interactions and
their topology have been shown to be a core aspect of the technological diffu-
sion process. Geroski (2000) provides a general overview of models including the
epidemic and probit type models, which serve as an empirical basis to model
the typical S-shaped diffusion process. Initially, adoption of a new technology
can rise slowly, but eventually, as more agents adopt, information accumulates
and uncertainty about its usage is resolved so that the number of users flattens
out. In this way, technology can spread like an epidemic. In theoretical contri-
butions, Acemoglu et al. (2011) make a distinction between epidemics (denoted
as simple contagion) and complex contagion, where each agent requires multiple
adoption in their neighborhood before adopting the innovation focusing on the
linear threshold model, while Montanari and Saberi (2010) make a distinction
between epidemic and game-theoretic models based more on strategic decision-
making. Namely, when adopting a new technology, each agent makes a rational
choice to maximize their payoff in a coordination game where players obtain a
higher payoff from adopting the same strategy as their opponents. In this sense,
the adoption and diffusion process is viewed more in terms of utility maximization
than exposure. Most existing econometric network-formation models are based
on this utilitarian perspective (see Chandrasekhar, 2016, for details).

The characteristics of the diffusion process also interact with the topological prop-
erties of the network. From an empirical perspective, Chang et al. (2009) show
how the analysis of patent citation networks, in particular through cluster analy-
sis, can help recover the dynamics of knowledge and technology diffusion. From a
more behavioral perspective, Cowan and Jonard (2004), Delre et al. (2007), and
Midgley et al. (1992) develop micro-founded models of knowledge and technology
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diffusion. In particular, Cowan and Jonard (2004) and Delre et al. (2007) show
that (i) the efficiency of a diffusion network depends on the relationship between
the micro-economic properties of the diffusion process and the structure of the
network and that (ii) small-world networks exhibit a form of generic efficiency.
Delre et al. (2007) further emphasize that heterogeneity of the population can
accelerate the speed of diffusion.

Accordingly, our contribution aims to account for the interactions between the
diffusion process and the network structure in the estimation of the determinants
of technological diffusion.

3 The model

In order to assess the potential impact of policy on the global patterns of techno-
logical diffusion, we propose a methodology to estimate from data about instal-
lation of a given technology, the determinants of the diffusion of this technology
in a network of countries. Two caveats apply à priori to this approach. First, the
main agents of technological diffusion at the micro-level are firms, not countries
(see e.g. Chaney, 2014). This raises the issue of aggregation and in particular of
the possibility for a country to be taken as representative of its domestic firms.
Second, as emphasized in the recent trade literature (in particular Hidalgo and
Hausmann, 2009), there are major interactions and interdependencies between
the diffusion of different products; one is actually concerned by two networks: a
network of countries and a network of products.

With respect to the latter issue, we try to proxy the interactions between prod-
ucts by considering among the determinants of technological diffusion the charac-
teristics of the global trade network (measured using the NSF-Kellogg Institute
Economic Integration Agreement Database). With respect to the issue of aggre-
gation at the country-level, two specific features of our approach help mitigate
the problem. First, the underlying model of diffusion we use is of an "epidemic"
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rather than of a utilitarian nature. Thus countries do not decide to adopt a
technology. Rather, the technology diffuses between countries. Second, our es-
timation procedure is based on data about actual, physical, installations. Thus,
the spatial dimension is hard-wired to our approach. A country is then considered
as the set of locations in which a technology is actually employed. Choosing the
country-level is really a matter of scale. In particular, there are no issues about
the domiciliation of firms and/or their headquarters that could render data in-
terpretation problematic (as for CDM data, see below). Last, but not least, the
country-level is the right scale to address policy issues. In this respect, we are in-
terested in the structural properties of the network and how these are influenced
by both domestic and international policy. This opens a potential channel for
policy to foster the diffusion of technology, and also a rationale for implementing
the model at the country level. In the context of climate policy, enhancing the
diffusion of low-carbon technology is one of the key measures put forward in the
COP21 Paris agreement. In particular, a better understanding of the structural
impacts of both national and international policy on technological diffusion can
help linking international trade and environmental agreements in the context of
climate clubs formed by subset of UNFCCC member countries (see e.g. Nordhaus,
2015; Hovi et al., 2016; Keohane and Victor, 2016).

More formally, we use a representation of the technological diffusion network
inspired by the epidemiological literature (see e.g., Hufnagel et al., 2004) and
recent contributions focusing on the diffusion of information in social networks
(in particular Gomez Rodriguez et al., 2010). Namely, we represent the space of
technological diffusion as a set of countries N linked through a weighted network
A = (ai,j)i,j=1···N ∈ [0, 1]N×N where ai,j represents the probability for a technol-
ogy to diffuse from country i to country j. At the micro-level, this corresponds
to the probability for a firm offering a technology on the market in country i to
expand its operations to country j. A similar measure is introduced in the trade
network formation model of Chaney (2014), but it is assumed to be a simple
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function of GDP and distance.1 We rather argue that this probability, which
measures the rate at which embodied technologies diffuse between countries, de-
pends on a range of characteristics about the source country, the target country
and their relationship. For example, it might depend on the size of the market in
the source country, the level of human capital in the target country and on the
existence of a trade agreement between the two countries. The choice of these
explanatory variables might depend on the type of technology considered, hence,
in the application to wind energy considered below we account specifically for
environmental agreements (ratification of the Kyoto Protocol) and domestic reg-
ulation on renewable energy, such as feed-in tariffs or mandatory requirements
(see section 4.1 below for a detailed description of these policy measures). Now,
in all generality, one can consider three main types of variables: a first set of
variables xi := (x1i , · · · , x

n1
i ) ∈ Rn1 characterizing the source country, a second

set of variables yj := (y1j , · · · , y
n1
j ) ∈ Rn2 characterizing the target country, and a

third set of dyadic variables z(i,j) = (z1(i,j), · · · , z
n1

(i,j)) ∈ Rn3 characterizing the re-
lationship between the two countries (z(i,j) shall in general be a multi-dimensional
variable accounting for the range of bilateral features discussed above). A natu-
ral approach would then be to try to estimate the diffusion probability between
country i and j using a logistic model of the form:

ai,j = P(α,β,γ)(xi, yj, zi,j) :=
1

1 + e−(α·xi+β·yj+γ·z(i,j))
(1)

where α ∈ Rn1 , β ∈ Rn2 , and γ ∈ Rn3 are the vector of coefficients associated
respectively to the characteristics of the source country, the target country, and
their relationship.

The estimation of this model would require the observation of diffusion events
between pairs of countries. Such phenomena are however hardly observable. In
practice, one rather observes the country of origin of the product/technology and
its progressive adoption in a set of countries but without specific information

1See equation 7 in Chaney (2014).
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about the diffusion routes. A range of countries can however play a role in the
diffusion thanks to complementary features such as their capacity to adapt tech-
nologies to regional market conditions, their central position on commercial routes
or the structure of international trade or environmental agreements.

Formally, the diffusion of a technological vintage in the discrete time-frame {0, · · · , T}
is captured by a "cascade," i.e. a series of dates (t1, · · · , tN) where ti ∈ T :=

{0, · · · , T} ∪ {+∞} is the date at which the technological vintage was adopted
in country i (with ti := +∞ if the vintage was never adopted). Such a cascade
can also be represented by a boolean matrix of adoption status Sv ∈ {0, 1}N×T

where Sv(i, t) = 1 if the vintage v is present in country i at time t and Sv(i, t) = 0

otherwise.

Then, given observations of a set of cascades S = (Sv)v∈V corresponding to V
different technological vintages, we can estimate the determinants of bilateral
diffusion by maximum likelihood, i.e., determine the coefficients in equation (1) for
which the likelihood of the observed diffusion patterns is maximal. Indeed, given
panel data about source countries X = (xi,t)i=1···N,t=1···T , target countries Y =

(yj,t)j=1···N,t=1···T , and relationship characteristics Z = (z(i,j),t)i=1,··· ,N,j=1···N,t=1···T ,

one can compute the likelihood of a cascade Sv as follows under the assumption
that the diffusion process is Markovian.

• Given the adoption status in period t, the probability for a non-adopting
country j to remain non-adopting in period t+ 1 is∏

{i|Sv(i,t)=1}

(1− P(α,β,γ)(x
t
i, y

t
j, z

t
i,j)) (2)

while the probability that it adopts is

1−
∏

{i|Sv(i,t)=1}

(1− P(α,β,γ)(x
t
i, y

t
j, z

t
i,j)) (3)

.
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• Thus the probability of the transition from the adoption vector Sv(·, t) to
the adoption vector Sv(·, t+ 1) is given by:

∏
{j|Sv(j,t+1)=0}

∏
{i|Sv(i,t)=1}

(1− P(α,β,γ)(x
t
i, y

t
j, z

t
i,j))×

∏
{j|Sv(j,t+1)=1}

1−
∏

{i|Sv(i,t)=1}

(1− P(α,β,γ)(x
t
i, y

t
j, z

t
i,j))

 (4)

• Therefrom, using the assumption that the diffusion process is Markovian,
one deduces the likelihood of cascade Sv as:

Pv(α,β,γ)(X, Y, Z) =
T−1∏
t=0

∏
{j|Sv(j,t+1)=0}

∏
{i|Sv(i,t)=1}

(1− P(α,β,γ)(x
t
i, y

t
j, z

t
i,j))×

T−1∏
t=0

∏
{j|Sv(j,t+1)=1}

1−
∏

{i|Sv(i,t)=1}

(1− P(α,β,γ)(x
t
i, y

t
j, z

t
i,j))

 (5)

This approach for the computation of the likelihood of a cascade was introduced
in Wu et al. (2013) (although their formulation is less general and incomplete).
The default approach to then compute the likelihood of a set of cascades is to
use the independent cascade model of Gomez Rodriguez et al. (2010), that is
to assume that the diffusion of each technology is an independent process. This
yields the following equation for the likelihood of the set of observed cascades
S = (Sv)v∈V .

Lα,β,γ(S) =
∏
v∈V

Pv(α,β,γ)(X, Y, Z) (6)

One can then estimate the determinants of diffusion, (α, β, γ), by maximum likeli-
hood. This allows in particular to investigate, through the coefficient γ associated
with link characteristics, the impact of the participation in bilateral or multilat-
eral trade or environmental agreements on the diffusion of technologies between
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countries. In particular, it shall allow to investigate which designs for climate
clubs might be conductive to enhanced technological diffusion in line with the
commitments of the Paris Agreement.

Nevertheless a number of caveats apply to the model. First the choice of a logit
specification for the bilateral probability of diffusion is not necessary. It cor-
responds to a Poisson diffusion process and hence to the assumption that the
rate of diffusion from a country to its neighbor is constant over time. Alterna-
tives can be considered in which the diffusion rate decays over time (see e.g. the
power-law model in Gomez Rodriguez et al., 2010), which amounts to consider
that the probability of diffusion is maximal at the time of adoption and decreases
from then on. Second, the assumption that the cascades are independent is a
major simplification, in particular in the context of technological diffusion where
one could rather consider that adoption of previous technological vintages has
increased technological capability and therefore is likely to enhance adoption of
new technological vintages. However, as emphasized below, this can be partly
overcome by using alternative measures of the technological level of the countries.

4 Data description and estimation results

4.1 Description of variables and data

We shall use the methodology introduced above to analyze the determinants of
the formation of the wind technology diffusion network. Wind is indeed one of
the fastest growing forms of renewable energy and exhibits rapid technological
progress. It is thus expected to play a key role in climate change mitigation (see
e.g. Edenhofer et al., 2011). Furthermore, there exists a very complete database,
the "Wind Power",2 providing detailed technological and industrial information

2Available at: http://www.thewindpower.net/.
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and almost comprehensive coverage on wind turbines installed from 1983 to 2016
at the global scale.

We have thus extracted from the wind power dataset observations of 223 wind
technology diffusion cascades. A technology is identified with a pair (manufac-
turer, turbine size) given that the turbine size is the main determinant of its
capacity and a representative carrier of technological progress. We have then
defined the diffusion process of each technology, i.e., the cascades per se, by as-
sociating to each country the first date at which a turbine corresponding to that
particular technology has been installed in the country. In this sense, our analysis
focuses purely on the technological dimension, i.e., the presence of a technology
or not, but discards completely the industrial perspective, i.e., the scale of de-
ployment of the technology. With respect to time-scales, the speed of diffusion
is reasonably fast with respect to the lifetime of the technology. The length of
cascades in our sample ranges between 4 and 20 years. The average life of a wind
power turbine is 20 years (16-24 years). The amortization period of a wind plant
is of the same order of magnitude, since the turbine cost has varied historically
from 64-84% of the total production costs, with later estimates towards the upper
end (IRENA, 2018).

There are 94 countries that have installed at least one wind turbine according to
our dataset. They form a sub-sample of countries to which we have added the
set of countries that are members of the United Nations to form a full sample
of 195 countries.3 In order to proceed with the analysis of the determinants of
technological diffusion in this network of countries, we enrich this dataset with
characteristics that can be associated to a country as a source (of the type xi
in equation (1)) and as a target (of the type yj in equation (1)) of technological
diffusion, as well as characteristics of the relationship between pairs of countries
(of the type zi,j in equation (1)).

3Since the original turbine dataset includes the Faroe Islands and Puerto Rico, these are also
included in the full sample.
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By construction, the model accounts for the fact that the identity of previous
adopters matters because they are the only potential sources of diffusion. This
applies in particular to the initial adoption country, which generally coincides
with the manufacturer source country (although the exact place of production is
impossible to ascertain unambiguously given the global nature of value chains in
production and the fact that each wind turbine assembles hundreds of different
components).

With respect to policy drivers, key variables are included to capture the impact
on technological diffusion of international trade and environmental agreements, as
well as domestic support policy. For international trade, we include a measure of
the level of economic integration of bilateral country pairings i and j at time t from
the NSF-Kellogg Institute Economic Integration Agreements (EIA) Database.4

Compared to trade openness measures commonly used in both the trade and
technology diffusion literature (e.g., see Ferrier et al., 2010; Comin and Hobijn,
2010),5 it allows for a richer evaluation of trade relationships. In addition, since
this variable is dyadic by nature, it is included as one of our zi,j features, with the
expectation that the impact will be positive and significant, as increased trade
openness should facilitate technological flows (Lovely and Popp, 2011).

For environmental policy, we focus on policy directed at combatting climate
change, both nationally and internationally. As regards international institutions
and mechanisms, we control for whether the country has ratified the Kyoto Pro-
tocol or not. For Annex 1 countries it implied binding emission reduction targets
over the treaty period6 and for non-Annex 1 countries it opened for participation

4Depending on the integration level, 0= No Agreement, 1= Non Reciprocal Preferential
Trade Arrangement, 2= Preferential Trade Arrangement, 3= Free Trade Areas, 4= Customs
Union, 5= Common Market, 6= Economic Union. For most of the cells where the EIA status
of the country pair changes, there even exists a hyperlink to a copy of the original treaty.

5Generally, this is defined as the sum of exports and imports of goods and services measured
as a share of GDP, or the ratio of imports per worker (Caselli and Coleman, 2001).

6The Kyoto Protocol, adopted in December 1997, entered into force in February 2005 after
the ratification requirements had been fulfilled, with a first commitment period running from
2008 to 2012.
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in the Clean Development Mechanism. In our estimations following equation (1),
we define it as a dyadic variable zi,j taking the values 0 if no country in the pair
has ratified, 1 if at least one country in the pair has ratified and 2 if both countries
have ratified.7 As noted in Section 2, public policy and regulation in general has
been shown to be a major driver behind renewable energy investment. However,
results on the impact of the Kyoto Protocol on renewable energy adoption have
been mixed (Pfeiffer and Mulder, 2013), which may be a signal that policy ef-
forts predating the Kyoto Protocol (although less of a coordinated effort) were
in part responsible for early adopters (cf. Popp et al., 2011). Despite the Kyoto
Protocol occurring after the enactment of specific renewable support policies in
some countries, it is a notable breakthrough in international climate policy and
as pointed out by Popp et al. (2011, p. 657), can serve as a signal of a country’s
commitment and future carbon prices even though it does not require countries
to make specific investments in renewables. Grubb et al. (2015) also note that
measures such as feed-in tariffs can be considered as encompassing an indirect
form of carbon pricing, relating to the domestic dimension of climate policy.

For domestic support policy, a unique aspect of our data is that we have con-
structed it especially for this paper with a focus on wind energy. The sources
are the IEA/IRENA Global Renewable Energy Policies and Measures Database8

combined with IRENA policy briefs for some individual countries and regions
(IRENA, 2015). We created two measures based on the data: first, a binary vari-
able taking the value of 1 (and zero otherwise) if a country has in place a direct
support policy of wind energy for each year.9 General policy support and policies
aimed at funding R & D are not included, but rather, economic and regulatory

7To control for the effect of the Kyoto Protocol, unilateral analyses of the adoption of renew-
able energy typically use either a dummy variable from 1998 onwards (Brunnschweiler, 2010;
Pfeiffer and Mulder, 2013) or a dummy variable indicating whether the country has ratified the
Protocol in a given year (Popp et al., 2011).

8This database contains information on energy-related policies, among
which are policies to support renewable energy development and deployment:
https://www.iea.org/policiesandmeasures/renewableenergy/

9Implementation after 1 August is counted as the following year.
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incentives aimed at the actual installation of wind power: fiscal incentives such
as subsidies, corporate tax breaks, green certificates and feed-in tariffs, as well as
regulatory instruments such as mandatory requirements and obligation schemes.
This is important because direct economic incentives have been shown to be effec-
tive in inducing adoption from a unilateral perspective (Söderholm and Klaassen,
2007), with some evidence of the type of support differing according to the type of
renewable energy (Polzin et al., 2015). The second measure of policy encouraging
adoption of wind energy is a binary variable set equal to one (and zero otherwise)
if a country has enacted reductions in import tariffs for wind equipment for a
given year. Following equation (1), the first measure is introduced into the equa-
tion as both xi and yj, while the second measure is introduced only for the target
country yj. Intuitively, the first measure is primarily meant to stimulate demand
thus inducing more development/adoption of renewables within a country or im-
ports of the technology, while for the second measure a target perspective is more
reasonable as the policy is aimed at lowering trade barriers for imports of wind
energy.

In addition, we control for other standard determinants from the literature on
technology diffusion. Since GDP per capita and human capital measures are
strongly correlated with a measure of technological capability (r>0.70; also see
Caselli and Coleman, 2001; Comin and Hobijn, 2010), we include only the latter
as it has more intuitive appeal in this context. Several studies highlight the
importance of capacity building as a means to accelerate technology diffusion.
In this respect, although trade can provide elements of technology, in order for
the technology transfer to be successful, there needs to be a foundation. For
this purpose, we use the composite ArCo technology index, covering three main
dimensions of technological change: innovative activity (number of patents and
scientific publications), infrastructures (diffusion of old and new technologies),
and the quality of human capital (Archibugi and Coco, 2004).10 As noted in

10This measure is widely used in many areas including (green) technology adoption and
diffusion, and economic development.
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Dechezleprêtre et al. (2008), the expected effect of this factor is not clear-cut. At
first, it seems that new technologies are more likely to be diffused to countries with
higher technical competence. However, higher technical competence can signify
that many technologies are already locally available, thus reducing transmission
probabilities. In this case, it is interesting to consider both source and target
perspectives, and hence we introduce this variable in the estimations as both
xi and yj. Another main country-level characteristic included in the technology
adoption and diffusion literature is institutions (cf. Comin and Hobijn, 2009).
We use the rule of law measure, which is an index ranging from -2.5 (weak) to
2.5 (strong) governance performance for each country over time from the World
Bank’s Worldwide Governance Indicators. This indicator was particularly chosen
because it is meant to capture the extent to which agents have confidence in
and abide by the rules of society, especially the quality of contract enforcement,
property rights, police, and courts (Kaufmann et al., 2011).

In addition, we include the log of annual added wind power generation (GWh)
for each source country over time xi in our estimations. As discussed in Section
2, Dechezleprêtre and Glachant (2014) actually use this measure as a proxy for
domestic policy. Here, we include it as a measure of market share or ability of
a country to diffuse to other potential countries since production is found to be
only weakly correlated with the policy measures used in the analysis (r<0.12). Fi-
nally, we also include geographical proximity, measured as the inverse of bilateral
distances (in km) between countries i and j (Mayer and Zignago, 2011).

4.2 Empirical results

From a policy point of view, the results presented in Table 1 provide interesting
insights on accelerating the diffusion of wind energy, which forms a key compo-
nent in the energy transition as highlighted in the introduction.11 First, one of

11In terms of evaluating model adequacy, we report the McFadden-R2 which is a useful pseudo
R2 measure and find that it is quite high, representing good model fit for all specifications
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the most important factors driving technology diffusion is economic integration.
This corroborates previous studies (e.g., Dinar et al., 2011; Dolšak and Crandall,
2013), that the strength of international relations (e.g. trade and prior interac-
tions such as colonial ties) are key in facilitating flows. As can be seen in the
first and third columns (Models A and B, respectively), trade policies fostering
increased economic cooperation between countries induce a positive impact on
global deployment with the EIA point estimate being positive and highly sig-
nificant for both model specifications. In particular, ceteris paribus, a one unit
increase in the level of integration multiplies the initial odds ratio by 1.231.12 A
distinguishing factor of this measure is that even though it has a dyadic format,
it not only represents bilateral trade flows and agreements, but also multilateral
ones such as trade blocs thus going more into the direction of climate clubs fos-
tering cooperation. In this context, it can be envisioned that agreed treatment of
international trade extended to for example renewable technologies such as wind
power can be a vital element in the formation of such a club based more on ben-
efits accrued to its members (cf. Grubb et al., 2015). As EIA can be seen as a
continuous variable with level 6 representing the strongest economic integration
(see previous subsection) and there is overlap between the different levels, we first
treat it as such. Nevertheless, it is also interesting to examine if the types of
EIA have different effects. We have thus also estimated the impact of EIAs with
treatment coding (with the reference group being EIA=0, i.e., No Agreement).
These results are shown in the second and last columns. Due to few observations
on deeper EIAs - customs unions, common markets and economic unions - these
are combined into one variable as in Baier et al. (2014). The odds of transmission
occurring in a country-pair having a preferential trade agreement (EIAPTA) are
exp(0.023) ≈ 1.023 times higher than the odds of having no trade agreement.
A country-pair that has in place a free trade agreement (EIAFTA) where trade
barriers are eliminated (or at least substantially) among members, the odds of

(McFadden, 1973; Cameron and Trivedi, 2005).
12Model B is more parsimonious as will be explained below. Since results are similar, the

discussion refers to Model A unless stated otherwise.
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transmission are around 1.071 times higher than the odds of transmission be-
tween a country-pair without this type of trade agreement. This corroborates
that a higher level of economic integration between countries facilitates techno-
logical flows. Furthermore, the deeper EIAs (EIACUCMEUN) have an even larger
effect, where the odds are around 2.515 times higher than the odds of transmission
if no agreement is in place between countries.

In addition to the strength of international trade relationships, it is also expected
that international and domestic environmental initiatives positively influence the
acceleration of climate-friendly technologies. However, in terms of the interna-
tional dimension an unexpected result is found for the Kyoto ratification variable.
In this respect, it is relevant to mention two main points. First, these types of
measures are usually explored in terms of their impact on domestic adoption
rather than from a cross-border transfer perspective as is the case here. Although
overall Kyoto ratification is found to have a positive impact on investment deci-
sions, it is interesting to note in this context that Popp et al. (2011) find that for
wind, the effect of Kyoto falls when wind related country variables are controlled
for that we have included (e.g., wind-specific domestic policies to be discussed
shortly).13 For this reason, we have also included the results of Model B to ex-
plore whether taking out these latter variables affect the Kyoto estimate. It turns
out, however, that the results across all models are quite similar. This leads us
to the second main point. Since our cascade dataset starts 15-20 years before
Kyoto ratification (which entered into force in 2005), the diffusion patterns we
observe occur too early for the policy to show its impact. For this reason, it is
also relevant to introduce specific domestic policies in the specification that pre-
dated this international agreement. Indeed, the earliest years for ratification of
the Kyoto Protocol are between 1998 and 2000 but ratification can occur as late
as in 2009 and 2010 whereas economic and regulatory incentives for wind power
are observed as early as in 1989-2002 for several European countries, and some

13As mentioned in Section 2, for the specific study on wind, Dechezleprêtre and Glachant
(2014) do not include the Kyoto Protocol or specific domestic policy instruments.
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countries in South America.

Regarding domestic environmental policies, as for the international measures,
they are also generally analyzed in terms of own-country effects in contrast to a
network perspective. In our case, as described in the previous subsection they
are customized especially for wind energy. In particular, in addition to economic
integration, we find that whether a country has in place a direct support policy
for wind energy has a positive and significant impact on the probability that a
country diffuses a technology. This suggests that such policies contribute to the
development of an industrial base, which fosters further diffusion. The impact of
support policy in target countries is, at first glance, unexpected. It is found to be
negative rather than positive, although statistically insignificant. The most likely
explanation for this finding is that what is measured in the cascades is the first
time a technology was introduced rather than the volume (in terms of number of
turbines or their capacity). Indeed, the introduction of a technology is likely to
predate the support policy. Moreover, since domestic support policies are created
primarily to stimulate investments to promote increased use of renewables, the
impact is accordingly much more on the volume than the existence of a diffusion
event as reflected in the current conceptualization of cascades.14 Since these two
effects can be confounding, we also estimated Model A without the direct policy
measure from the source perspective and find that all estimates remain similar
(see the results of Model B in columns 3 and 4). Another likely explanation for
these results relate to those discussed above on the Kyoto Protocol. From the
support policy data, it can be observed that in many countries the policy was
introduced relatively recently (mostly in the 2000s) and thus possibly after the
first diffusion event for most technologies, which is what is captured in a cascade.
Yet, it might also be the case (and it is definitely not ruled out by our results)
that domestic environmental policies have no effect whatsoever on technological
transfers.

14As an extension, it would be relevant to modify the definition of a cascade in the modeling
approach so as to account for each installation (not only the first one) in order to better account
for the intensive margin.
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Intercept

Geographical proximity

Kyoto ratification

Rule of law_target

ln Windgen_source

EIA

EIA_PTA

EIA_FTA

EIA_CUCMEUN

ArCo_source

ArCo_target

RE direct policy wind_source

RE direct policy wind_target

RE tariff exemptions wind_target

McFadden R2

Log-Likelihood

-0.624

(-1.146)

0.229

-5793.07

0.023**

(2.564)

0.067**

(4.144)

0.922**

(5.679)

(24.673)

2.376**

(11.807)

0.061**

(3.921)

0.115**

(5.940)

0.983**

(11.405)

-0.638**

(-15.627)

0.339*
(2.509)

0.287**

Model B_EIAs

-8.251**

(-35.171)

0.037

(0.002)

(-0.313)

0.381

(0.951)

0.232

-5774.12

-0.547

(-0.591)

0.588**

(5.105)

-0.061

(19.931)

2.071**

(10.033)

-0.670**

(-9.904)

0.330*
(2.246)

0.259**

Model A_EIAs

-8.194**

(-21.387)

0.032

(0.001)

3.129**

(17.279)

-5837.17

0.223

-8.952**

(-39.925)

0.038

(0.001)

-0.687**

(-17.227)

0.267*
(2.034)

-0.617

(-1.192)

0.312**

(28.314)

-5815.22

2.747**

(14.531)

-0.727

(-1.325)

0.628**

(6.404)

-0.097

(-0.599)

0.254

(0.782)

0.226

Model A Model B

(13.566)

-8.923**

(-37.356)

0.051

(0.002)

-0.725**

(-16.987)

0.354*
(2.407)

0.282**

(23.581)

0.208** 0.222**

(14.375)

Table 1: Estimation results of the diffusion network approach

Notes: For country-specific explanatory variables, the number of observations is 195× 34, with
195 nodes and 34 time periods. For dyadic variables, there are 195× 194× 34 observations; for
geographic proximity this is symmetric, but this is not necessarily the case, as in the case of the
EIA variable where the values of (i, j) and (j, i) can differ. t-values are reported in parentheses.
**Significant at the 1 percent level. *Significant at the 5 percent level.
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In relation to the level of technological development, a striking pattern emerges
concerning technological capability as measured by the ArCo index. This fac-
tor has a highly positive and significant impact from the source perspective, but
is different in sign and insignificant from the target perspective for all specifi-
cations. This relates back to the point made in the previous subsection on the
contrasting effects of technological capability on technology transfers; from an
importer stance higher capability can mean that since technologies are already
available, this reduces the probability of transfers. In fact, it has been shown
in recent CDM related literature that in countries such as China and India with
stronger domestic bases, technology transfer is less prevalent (cf. De Coninck and
Sagar, 2015).15 The significant impact from the exporter viewpoint for the ArCo
measure, nonetheless, indicates that factors such as skilled technical personnel,
information on available technologies, and production capabilities are crucial for
accelerating diffusion at a global scale. Moreover, the point estimate of annual
wind power generation is highly significant across all models, with cross-border
technology diffusion positively influenced; in particular, ceteris paribus, a one per-
cent increase in wind power generation in country i induces a 0.28 (0.31) percent
increase in the odds of a transmission. In relation to technological development
and capacity building, it is also found that the quality of institutions is an in-
fluential determinant, suggesting that the overall governance level of countries
enhances the likelihood of technology flows between countries.16

Finally, we find a positive estimate for the impact of geographical proximity on
diffusion probability as one can expect that flows increase as the distance be-
tween countries decreases. However, this effect is statistically insignificant. This
highlights the preponderance of socio-economic factors over physical ones in the
diffusion process. This is a positive policy result in the sense that countries more

15Though more from a developed to developing transfer perspective, Foucart and Garsous
(2017) theoretically show that larger absorptive capacities in developing countries may deter
investment by developed countries to invest in clean technology resulting in less transfers.

16Note that the Rule of law measure has been introduced from the target perspective as
intuitively it can be expected that it promotes inflows. We also checked a specification including
the same measure in the source country and it has a positive influence as well.
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at the periphery (further from the most important actors in the wind diffusion
network) can still potentially receive new technologies through other relevant
factors such as strengthened cooperation through trade and/or environmental
agreements. This also suggests potential extensions of the model of trade net-
work formation of Chaney (2014) where the probability of diffusion is mainly
based on geographical distance. In sum, the results reinforce that capacity build-
ing, domestic environmental policy initiatives and long-term relationships existing
between countries, especially as measured by the deeper EIAs, can help accelerate
deployment of wind energy (and potentially other climate-friendly technologies)
at the global scale.

4.3 The structure of the technological diffusion network

To further explore the network dimension, it is possible to reconstruct the wind
diffusion network based on the estimated coefficient values from Model A (param-
eterization) of the transmission probabilities according to equation (1). Taking
the values of the features for the most recent year and setting a threshold value
of ai,j > 0.01, different visualizations of the reconstructed networks are provided
in Figures 1 to 6.17 In Figures 1 and 2 the node size is based on the between-
ness, a centrality measure capturing the notion of hubs facilitating technology
flows.18 A visualization based on degree (Figure 3) also shows that among top
key players are the USA, Canada, Sweden, Germany, the UK, Denmark, Spain,
France, the Netherlands, Finland, Norway, and Taiwan. Interestingly, this has
some overlap with the findings in Halleck Vega and Mandel (2018) on key play-
ers in the network, though they use a different framework. Despite being one of

17All figures have been realized using the Gephi software (Bastian et al., 2009). Figure 1
provides a symbolic representation of the network using a force-layout algorithm and aggre-
gated countries outside of the most important into geographical clusters. Figures 2 to 6 use
a geographical layout and should be explored online using the zoom functionality of the file
viewer.

18Since potentially all nodes can be connected, we set a threshold as most ai,j values are
almost nil; overall, conclusions with smaller and larger values are similar.
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the largest countries with installed wind energy capacity, China does not appear
prominently. This is most likely a reflection of the prioritization on national de-
mand rather than participation both in global exports and imports relative to
other countries such as the USA and Germany, where the latter build more of a
global position in the supply chain (Lacerda and van den Bergh, 2014). However,
China’s growing position in the global wind energy market, as well as for solar
power, are more recent phenomena.

On this note, it is important to keep in mind that the reconstructed network is a
conceptualization of potential paths of diffusion of new technologies rather than
actual exports and imports. In fact, the most influential players in this setting
are due to their higher transmission probabilities and thus in their potential of
accelerating technology diffusion. Another useful measure in this sense is closeness
centrality (Figure 4), providing an indication of how fast a technology seeded in
one country would, on average, reach another country in the network. In this case,
in addition to aforementioned key players, Poland, Greece, Japan, Switzerland,
and Austria are also highly ranked. We also checked these conclusions based on
Model B and as expected, they are similar. To add a different perspective, the
reconstructed network in Figure 5 is based on eigenvector centrality, which can
be seen as a measure of the total diffusion range of a technology as a function of
the seed country. In this case, a European core is more clearly visible, although
the US and other countries elsewhere are still very prominent in the network. An
interesting further exploration, in this case, is to take an earlier time such as the
start of the turn of the 21st century when global wind power capacity started
taking off to a greater extent. This is represented in Figure 6 (same as Figure
3 except for the point in time), and here it can be seen that centrality is more
evenly spread out in this earlier diffusion period.

This absence of large hubs in the technological diffusion network is particularly
salient in developing countries. This is in line with the results of Halleck Vega and
Mandel (2018), which emphasize the lack of south-south transfers in the global
diffusion process and hence that most technological diffusion occur through north-
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Source/Target Arg Brz Chn Ind Mex Mor Pak Serb SA SK Urg Viet Total
Australia 4 2 6
Austria 45 45
Belgium 2 1 3
Denmark 2 2
Finland 28 28
France 75 1 2 78

Germany 18 5 4 1 1 29
Italy 2 8 1 1 12
Japan 1 26 6 3 36

Liechtenstein 4 4
Netherlands 6 80 9 1 1 97

Norway 8 8
Spain 4 10 5 9 1 1 30

Sweden 74 12 2 1 89
Switzerland 8 168 37 1 1 3 218

U.K. 5 9 595 36 5 2 7 1 1 661
Total 6 29 1143 114 20 4 7 4 5 5 4 5 1346

Table 2: Registered CDM projects for wind as of January 2018.

Notes: The source is the country of the CDM buyer, the target the host of the CDM project.
Target countries with less than 3 CDMs have been omitted. Remaining target countries are Ar-
gentina (Arg), Brazil (Brz), China (Chn), India (Ind), Mexico (Mex), Morocco (Mor), Pakistan
(Pak), Serbia (Serb), South Africa (SA), South Korea (SK), Uruguay (Urg), Vietnam (Viet).

south transfers. These findings and the fact that a relatively large numbers of
developing countries are nevertheless part of the wind diffusion network (because
they have indeed adopted some of the technologies) are in strong contrast with
the picture that emerges from CDM data. Indeed, as illustrated in Table 2, the
diffusion of wind technology through CDM is extremely concentrated on China
and India whereas actual diffusion is much more evenly spread. Furthermore, most
of the CDM projects originate from Switzerland and the United Kingdom and
are initiated by financial rather than industrial actors. This comparison suggests
that CDM projects account for a very small share of actual technological diffusion
processes and that the focus on CDM data provides a somehow distorted view of
the global technological diffusion network. This provides additional explanation
for the negative impact of the Kyoto ratification in our estimation above and
reinforce our conclusions about the dominance of long-term economic and trade
relationships as significant drivers of technological diffusion.
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5 Conclusions

We have developed a methodology to estimate the determinants of the formation
of a technological diffusion network from adoption data. We assume that bilateral
diffusion can be explained by a logit model taking into account the characteristics
of source and target countries as well as that of their bilateral relationship. On
this logit model we superimpose an epidemic-like model of network diffusion. We
then estimate, via maximum likelihood, the parameters that best explain the
observed patterns of technological diffusion at the global scale. This approach
allows to overcome the issue that bilateral diffusion events are generically not
observed.

We have applied this methodology to wind energy, which is one of the key tech-
nologies in climate change mitigation. Therefore, we have first inferred wind
technology diffusion patterns from a comprehensive dataset about wind turbines
installed globally since the beginning of the 1980s. We have then constructed a
database of wind support policy measures through an in-depth analysis of the
IEA/IRENA Global Renewable Energy Policies and Measures Database. Finally,
we have combined these with detailed data about trade integration, technological
and economic development, environmental policy and geographical characteristics
in order to estimate the determinants of technological diffusion. Our approach
treats each type of wind turbine produced by each manufacturer as a different
technological vintage, but does not use information about the volume of adop-
tion. In this sense, our focus is much more on the extensive than on the intensive
margin of technological diffusion.

Our results emphasize that long-term relationships as measured by economic inte-
gration, in particular being part of a customs union, common market or economic
union, are key determinants of technological diffusion. It is also found that the
level of technological development, as in the knowledge/skills base, as well as
whether a country has a direct support policy for wind energy contributes to the
deployment of this renewable energy source. Nevertheless, other specific support
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measures for certain technologies seem less relevant for the diffusion per se, al-
though they might play a crucial role in industrial policy, i.e., in the scaling up
of a technology to reach relevant market size. Our results also highlight that the
scope of technological diffusion is much broader than what is suggested by the
consideration of CDM projects alone, which are particularly focused on China
and India.

Finally, the network of technological diffusion inferred from our approach high-
lights the central role of European countries in the diffusion process and the ab-
sence of large hubs among developing countries. From an empirical perspective,
these findings are in line with our focus on the extensive margin of technological
diffusion. Indeed, European countries are producing and installing a wide variety
of turbines while the performance of large developing countries like China is more
related to the volume installed. From a theoretical perspective, these findings
are reminiscent of the large literature emphasizing the presence of core-periphery
structures in socio-economic networks (see e.g. Hidalgo et al. (2007) for the global
trade network or Vitali et al. (2011) for the global shareholding network).
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Figures

Figure 1: Reconstructed network using force-atlas algorithm. The node size is
proportional to betweenness centrality, a centrality measure capturing the notion
of hubs facilitating technology flows.
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Figure 2: Reconstructed network using geographical layout. The node size is
proportional to betweenness centrality, a centrality measure capturing the notion
of hubs facilitating technology flows.
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Figure 3: Reconstructed network using geographical layout. The node size is
proportional to degree centrality.
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Figure 4: Reconstructed network using geographical layout. The node size is
proportional to closeness centrality, which provides an indication of how fast a
technology seeded in one country would, on average, reach another country in the
network.
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Figure 5: Reconstructed network using geographical layout. The node size is
proportional to eigenvector centrality, which can be seen as a measure of the total
diffusion range of a technology as a function of the seed country.
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Figure 6: Reconstructed network using geographical layout. The node size pro-
portional to degree centrality.
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