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1 Introduction

Risk about the duration of life is a major dimension of human condition. Whereas
all individuals know that they will die one day, no one knows precisely when
one’s death will take place. This risk is faced by everyone, but is somewhat
diffuse and abstract, and thus hard to quantity in an intuitive way.1

In a recent work, Meyer and Ponthiere (2019) proposed to quantify risk
about the duration of life by means of Shannon’s entropy index defined to the
base 2 (see Shannon 1948). Lifetime entropy is defined as follows:2

Hk = −
115∑
i=k

pi,k log2 (pi,k) (1)

where Hk denotes lifetime entropy at age k and pi,k is the probability of a life
of length i for an individual of age k.
Lifetime entropy Hk is the mathematical expectation of the quantity of in-

formation revealed by the event of a life of a particular length i ≥ k, or, alter-
natively, of the quantity of information revealed by the event of a death at an
age i ≥ k. As such, Hk can be regarded as the informational equivalent of the
standard life expectancy. Instead of measuring the mathematical expectation of
the duration of life, Hk measures the mathematical expectation of the quantity
of information revealed by a particular duration of life.
A major advantage of Shannon’s lifetime entropy with respect to other mea-

sures of risk about the duration of life, such as Kannisto’s coeffi cient 10C50

(Kannisto 2000), the standard deviation of the age at death (Lan Karen Che-
ung and Robine 2007, Edwards and Tuljapurkar 2005) and Gini indexes of the
length of life (Smits and Monden 2009), is to measure risk about the duration
of life in terms of bits, i.e. the quantity of information revealed by tossing a
fair coin. As such, that indicator makes the - quite abstract - risk about the
duration of life commensurable or comparable with the risk involved in tossing
a given number of fair coins, a life experience with which individuals have some
familiarity, since at least the Roman Empire.3

Whereas the effect of a change of an age-specific probability of death on
standard life expectancy is unambiguous, the same is not true as far as its effect
on its informational equivalent - i.e. human lifetime entropy - is concerned.
Hence an interesting question is to know how sensitive lifetime entropy is to
a change in age-specific probability of death. Does a rise in mortality risk at
a given age tend to increase, or, on the contrary, to decrease risk about the
duration of life measured by lifetime entropy?
The goal of this paper is to examine the impact of a change in age-specific

mortality risk on risk about the duration of life, as measured by Shannon’s life-
1On the various measures of risk about the duration of life, see Wilmoth and Horiuchi

(1999) and Van Raalte and Caswell (2013).
2That lifetime entropy index is close to the one used in Hill (1993) and Noymer and

Coleman (2014), but differs regarding the basis: we use base 2, whereas Hill (1993) uses base
e and Noymer and Coleman (2014) use base 10.

3See Lanciani (1892).
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time entropy index. For that purpose, we first propose to decompose that effect
into its various components, to identify the necessary and suffi cient condition
under which a rise in mortality risk at a given age contributes to increase life-
time entropy. Then, we use that condition to study how the sign of the effect
of a change in mortality on lifetime entropy varies with the age.
Anticipating our results, we first show that a rise in the probability of death

at age n increases lifetime entropy at age k ≤ n if and only if the quantity of
information revealed by the event of a death at age n exceeds lifetime entropy
at age n+1 divided by the probability to survive from age k to age n+1. Then,
using that condition, we show that there exist, under general conditions, two
threshold ages: first, a low threshold age below which a rise in mortality risk
decreases lifetime entropy, and above which it raises lifetime entropy; second, a
high threshold age above which a rise in mortality risk reduces lifetime entropy.
Finally, using French life tables, we identify those two threshold ages, and we
show that the gap between those two threshold ages has been increasing over
the last two centuries.
Our work is clearly related to Zhang and Vaupel (2009), which examines the

effect of averting deaths on life disparity measured by life expectancy lost due to
death. Using a framework with age as a continuous variable, Zhang and Vaupel
(2009) showed that there exist, under general conditions on Keyfitz’s entropy of
the life table (Keyfitz 1977), a unique threshold age below which averting deaths
reduces life disparity, and above which averting deaths increases life disparity.
In particular, Zhang and Vaupel (2009) show that, if Keyfitz’s life table entropy
is less than 1, such a threshold age exists and is unique, whereas, if Keyfitz’s life
table entropy is larger than 1, averting deaths at any age increases life disparity,
whereas if Keyfitz’s life table entropy equals 1, averting deaths at age 0 has no
effect, but averting deaths at any higher age increases life disparity.
In comparison to Zhang and Vaupel (2009), our approach differs on three

main grounds. First, we focus on the effect of a change in mortality on risk about
the duration of life not measured by means of lifetime disparity as measured by
life expectancy lost due to death, but by means of Shannon’s lifetime entropy
index defined to the base 2. Second, at the technical level, our framework is
in discrete time rather than in continuous time, which makes the identification
of threshold ages more diffi cult to prove analytically. Third, at the level of
results, whereas Zhang and Vaupel (2009) identify a unique threshold age using
conditions on life table entropy, we identify, on the contrary, not one, but two
threshold ages, by making assumptions on the pattern of age-specific mortality.
The high threshold age that we identify is such that, below that age, a rise in
mortality risk raises lifetime entropy, whereas, above that age, a rise in mortality
risk reduces lifetime entropy, in a way that is quite similar to the threshold age
studied by Zhang and Vaupel (2009). In addition, we show that there exists also
another, lower threshold age, below which a rise in mortality reduces lifetime
entropy. We show that this low threshold age, which was equal to 6 years in
the early 19th century, has turned out to vanish to age 0 in the second half of
the 20th century, leaving us with a unique threshold age, below which a rise in
mortality raises lifetime entropy, and above which a rise in mortality reduces
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lifetime entropy.
The rest of this paper is organized as follows. Section 2 derives the necessary

and suffi cient condition under which a rise in age-specific mortality risk increases
lifetime entropy. Then, Section 3 uses that condition to identify two threshold
ages, around which the sign of the effect of a rise in age-specific mortality risk
increases lifetime entropy changes. Section 4 illustrates our findings numerically,
using life tables for France from the Human Mortality Database. Section 5
provides further decompositions of the effects at work, still using French life
tables. Concluding remarks are left for Section 6.

2 Relationship

We consider a discrete time model where age is a natural number between the
minimum age 0 and the maximum age M > 0. The probability of death at age
k ≥ 0, conditionally on survival to that age, is denoted by dk.

We measure risk about the duration of life by means of Shannon’s lifetime
entropy index defined to the base 2. Using the identity pi,k ≡ si,kdi, where

si,k =

i−1∏
j=k

(1− dj) is the probability of survival to age i for an individual of age

k, Shannon’s lifetime entropy index at age k can be rewritten as:

Hk = −
M∑
i=k

i−1∏
j=k

(1− dj)di

 log2

i−1∏
j=k

(1− dj)di

 (2)

Let us now examine the effect of a variation of the probability of death at age
n ≥ k on lifetime entropy at age k. Our results are summarized in Proposition
1, which states the necessary and suffi cient condition under which a rise of the
probability of death at age n increases lifetime entropy at age k. Actually,
Proposition 1 states that a rise in the probability of death at age n increases
lifetime entropy at age k if and only if the quantity of information revealed by
the event of a death at age n (measured by means of Wiener’s entropy) exceeds
Shannon’s lifetime entropy at age n + 1 divided by the probability to survive
from age k to age n+ 1.

Proposition 1 A rise in the probability of death at age n dn increases (resp.
decreases) lifetime entropy at age k if and only if:

W (sn,k) +W (dn) > (resp. < )
Hn+1

sn+1,k

where W (x) = − log2(x) is Wiener’s entropy (Wiener 1948), the quantity of
information revealed by the occurrence of a single event with probability x.

Proof. Shannon’s lifetime entropy at age k can be rewritten in terms of
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Wiener’s entropy indexes as follows:4

Hk =

M∑
i=k

i−1∏
j=k

(1− dj)di

− log2

i−1∏
j=k

(1− dj)

− log2 (di)


=

M∑
i=k

i−1∏
j=k

(1− dj)di

W
i−1∏
j=k

(1− dj)

+W (di)

 (3)

where W (x) = − log2(x). In order to examine the impact of a variation of the
probability of death at age n ≥ k on Hk, let us decompose Hk further:

Hk =
n−1∑
i=k

i−1∏
j=k

(1− dj)di

W
i−1∏
j=k

(1− dj)

+W (di)


+

n−1∏
j=k

(1− dj)dn

W
n−1∏
j=k

(1− dj)

+W (dn)


+

M∑
i=n+1

i−1∏
j=k

(1− dj)di

W
i−1∏
j=k

(1− dj)

+W (di)

 (4)

Using that decomposition, let us now compute the derivative ∂Hk

∂dn
:

∂Hk
∂dn

=

n−1∏
j=k

(1− dj)

W
n−1∏
j=k

(1− dj)

+W (dn)

+

n−1∏
j=k

(1− dj)dn

W ′ (dn)

+

M∑
i=n+1

− i−1∏
j=k\n

(1− dj)di

W
i−1∏
j=k

(1− dj)

+W (di)


+

M∑
i=n+1

i−1∏
j=k

(1− dj)di

W ′
i−1∏
j=k

(1− dj)

− i−1∏
j=k\n

(1− dj)


4See Meyer and Ponthiere (2019) on the relation between Shanon’s lifetime entropy index

and Wiener’s entropy of the event "death at age k (conditionally on survival to that age".

5



where W ′ (x) = −1
x ln(2) < 0. One can rewrite this as:

∂Hk
∂dn

= sn,k [W (sn,k) +W (dn)]︸ ︷︷ ︸
effect of ∆dn on likelihood of life of length n (+)

+ sn,kdnW
′ (dn)︸ ︷︷ ︸

effect of ∆dn on information revelation of life of length n (-)

− 1

1− dn
Hn+1︸ ︷︷ ︸

effect of ∆dn on likelihood of life of length > n (-)

+

M∑
i=n+1

(si,kdi)

[
W ′ (si,k)

(
− si,k

(1− dn)

)]
︸ ︷︷ ︸

effect of ∆dn on information revelation of life of length > n (+)

Note that this expression can be simplified further. Indeed, the second term
can be rewritten as:

sn,kdnW
′ (dn) = sn,kdn

−1

dn ln(2)
= sn,k

−1

ln(2)

while the fourth term can be rewritten as:

M∑
i=n+1

(si,kdi)

[
W ′ (si,k)

(
− si,k

(1− dn)

)]
=

1

ln(2)

1

(1− dn)

M∑
i=n+1

(si,kdi)︸ ︷︷ ︸
=sn,k(1−dn)

=
sn,k
ln(2)

since 1 =
n∑
i=k

si,kdi+
M∑

i=n+1

si,kdi ⇐⇒
M∑

i=n+1

si,kdi = 1−
n∑
i=k

si,kdi = sn,k(1−dn).

Thus the second and the fourth terms of ∂Hk

∂dn
cancel out. We thus have:

∂Hk
∂dn

≷ 0 ⇐⇒ sn,k [W (sn,k) +W (dn)]− 1

1− dn
Hn+1 ≷ 0

⇐⇒ W (sn,k) +W (dn) ≷ Hn+1

sn+1,k

Proposition 1 states that the sign of the effect of a change in mortality risk
at age n on lifetime entropy at age k is ambiguous, and depends on whether
the quantity of information revealed by the event of a death at age n exceeds
Shannon’s lifetime entropy at age n + 1 divided by the probability to survive
from age k to age n + 1. When the quantity of information revealed by the
event of a death at age n is higher than Shannon’s lifetime entropy at age n+ 1
divided by the probability to survive from age k to age n+ 1, then a rise in the
risk of death at age n increases lifetime entropy. Otherwise, when the quantity
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of information revealed by the event of a death at age n is lower than Hn+1

sn+1,k
,

then a rise of mortality risk at age n reduces lifetime entropy.
Whether the condition stated in Proposition 1 is satisfied or not is likely to

depend on the particular age n at which mortality varies, since age n affects
the quantity of information revealed by the event of a death at age n, i.e.
W (sn,k) + W (dn) on the LHS of the condition, as well as the probability to
survive to age n + 1 on the RHS of the condition. The next section examines
in details the relation between the age and the effect of mortality change on
lifetime entropy.

3 Existence of threshold ages

The previous section identified a simple condition that determines the sign of
the effect of a variation of an age-specific probability of death on lifetime entropy
measured by means of Shannon’s index defined to the base 2. That condition
can be used to show that there exist, under general conditions on the age-pattern
of mortality, two threshold ages, around which the sign of the derivative ∂Hk

∂dn
varies. For that purpose, this section will focus exclusively on the variation of
lifetime entropy at birth, that is, on how the age affects the sign of the derivative
∂H0

∂dn
. Proposition 2 summarizes our results.

Proposition 2 Assume that the risk of death is first decreasing with the age
during childhood, and, then, increasing with the age during the rest of life. There
exist two threshold ages a1 and a2 with 0 ≤ a1 < a2 such that:

• when n < a1, a rise in dn decreases lifetime entropy at birth H0;

• when a1 < n < a2, a rise in dn increases lifetime entropy at birth H0;

• when a2 < n, a rise in dn decreases lifetime entropy at birth H0.

Proof. Let us start from the condition of Proposition 1.

∂H0

∂dn
≷ 0 ⇐⇒ W (sn,0) +W (dn) ≷ Hn+1

sn+1,0

Let us first prove the existence and uniqueness of the low threshold age
a1 ≥ 0.
At age 0 (n = 0), the condition becomes:

∂H0

∂d0
≷ 0 ⇐⇒ W (d0) ≷ H1

(1− d0)

The higher d0 is, and the lower the LHS is, while the higher the RHS is. We can
show that there exists a threshold for infant mortality d̄0 such that for d0 > d̄0

we have ∂H0

∂d0
< 0 and for d0 < d̄0 we have ∂H0

∂d0
> 0.

Assume that d0 tends to 0. Then the LHS of the above condition W (d0) =
− log2(d0) tends to +∞, while the RHS tends to H1, which is finite, thus the
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LHS exceeds the RHS, implying that ∂H0

∂d0
> 0. Assume, on the contrary, that

d0 tends 1. Then the LHS tends to 0, while the RHS tends to +∞. This implies
that the RHS exceeds the LHS, implying that∂H0

∂d0
< 0.

By continuity, there exists a threshold of infant mortality d̄0 in ]0, 1[ such
that W

(
d̄0

)
= H1

(1−d̄0)
, at which a marginal change in infant mortality has no

impact on lifetime entropy, i.e. ∂H0

∂d0
= 0. That threshold is unique, since the

LHS is strictly decreasing in d0, while the RHS is strictly increasing in d0.
Hence, when infant mortality is higher than the threshold (which depends

on H1), a rise in infant mortality reduces lifetime entropy. When it is lower
than the threshold, it raises lifetime entropy.
Let us now move away from the first life-year. With the age, mortality falls

during infancy and then rises during adulthood. Consider now young adult
mortality, at which dn is very low and increasing with the age. In general
W (sn,0) tends to 0 (since sn,k is close to 1) and sn+1,k tends also to 1, so that
the condition becomes:

∂H0

∂dn
≷ 0 ⇐⇒ W (dn) ≷ Hn+1

Substituting for Hn+1, that expression becomes:

∂H0

∂dn
≷ 0 ⇐⇒ W (dn) ≷ Hn +

dn
1− dn

[
Hn −W (dn)

]
− (1− dn)W (1− dn)

Since dn is very low during young adulthood, the condition can be approxi-
mated by:

∂H0

∂dn
≷ 0 ⇐⇒ W (dn) ≷ Hn + 0− 0

When mortality dn is low and increasing with the age, we know from Meyer
and Ponthiere (2019) that the amount of information revealed by the event of
a death at an age n, i.e. W (dn), is higher than the mathematical expectation
of the amount of information revealed by the event of a death at an age i ≥ n,
i.e. Hn, so that the LHS exceeds the RHS, implying that ∂Hk

∂dn
> 0. Thus, when

considering young adults, the effect of a change of mortality risk on lifetime
entropy is positive.
Combining this with what we know concerning infancy, we see that two cases

can arise concerning the low threshold a1:

• Either infant mortality is higher than d̄0, so that we first have that a higher
mortality reduces entropy during early childhood, and then raises entropy
during young adulthood, in which case there must exist a threshold age
a1 > 0 below which ∂H0

∂d0
< 0 and above which ∂H0

∂d0
> 0;

• Or infant mortality is lower than d̄0, so that it is the case that, during
childhood and young adulthood, we have ∂H0

∂d0
> 0, in which case the

threshold age equals 0, and we have a1 = 0.
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Consider now the existence of second threshold age a2.
We know from above that, during young adulthood, we have ∂Hk

∂dn
> 0. If the

mortality risk is, during adulthood, increasing monotonically with the age, the
impact of a rise of the risk of death on lifetime entropy at birth becomes smaller
and smaller as the mortality risk goes up. To see this, rewrite the condition of
Proposition 1 as:

∂Hk
∂dn

≷ 0 ⇐⇒ W (dn) ≷ Hn+1

sn+1,k
−W (sn,k)

Take now the second-order derivative with respect to dn. Since sn,k and Hn+1

do not depend on dn, we have:

∂2Hk
∂d2

n

= W ′ (dn)︸ ︷︷ ︸
−

+
Hn+1 (−sn,k)

(sn+1,k)
2︸ ︷︷ ︸

−

< 0

Thus the impact of dn on lifetime entropy is positive but decreasing. Thus, as
mortality risk rises with the age (beyond age 20), the rise in lifetime entropy
becomes smaller and smaller.
Does there exist a level of dn such that ∂Hk

∂dn
= 0 and then turns to be

negative? The answer is positive. To see this, take very high ages. As n tends
to be very large, we have:

∂H0

∂dn
= W (sn,0) +W (dn)− Hn+1

sn+1,0
=
sn+1,0W (sn,0)−Hn+1

sn+1,0
+W (dn)

When n is very large, we have that sn,0 and sn+1,0 tend to 0, so that the above
expression can be approximated by:

∂H0

∂dn
=
∼ 0−Hn+1

∼ 0
+W (dn) < 0

Thus, at high ages, we have that ∂H0

∂dn
< 0.Thus, since we have ∂H0

∂dn
> 0 during

young adulthood, there must exist a second threshold age, a2, below which
∂H0

∂dn
> 0 and above which ∂H0

∂dn
< 0.

This completes the proof of the existence of a threshold a2. Note that the
uniqueness of that second threshold age is guaranteed by the monotonicity of
mortality with age for adults.
Finally, note that, when n is very large, and tends to the maximum age

M , we have Hn+1 → 0, so that, using Hospital Rule, we have, from the above
condition, that: ∂H0

∂dn
tends towards 0. Thus, although the impact of a rise of

dn on H0 is negative when n > a2, this negative effect tends to vanish to zero
when the age n approaches the maximum age M .
Proposition 2 states that, under general conditions on the age-mortality

pattern, the effect of a variation of the probability of death dn on lifetime entropy
varies with the age n. Proposition 2 states that there exists two threshold ages:
first, a low threshold age a1, below which a rise of dn decreases lifetime entropy,
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and above which a rise of dn increases lifetime entropy, at least until a second
threshold age a2 is reached, beyond which a rise of dn decreases lifetime entropy.
Thus, in the light of Proposition 2, it appears that how a variation of the
probability of death affects lifetime entropy varies significantly with the age:
for very low ages and very high ages, a rise of dn decreases lifetime entropy,
whereas for intermediate ages the opposite holds and a rise of dn increases
lifetime entropy.
When interpreting Proposition 2, one should be cautious about the level of

the low threshold age a1. Actually, as discussed in the proof, it is possible that,
when infant mortality is suffi ciently low, the first threshold age equals 0, so that,
for all ages below a2, a rise of dn increases lifetime entropy.

4 Numerical illustration

In order to illustrate the existence of the two threshold ages around which the
relation between mortality risk and lifetime entropy varies, this section uses life
tables for France from the Human Mortality Database. For the simplicity of
presentation, this section will use, for women and men, five period life tables,
for years 1816, 1900, 1950, 1980 and 2016.
Figure 1 shows, for each of those life tables, the impact of a variation of

the probability of death dn on lifetime entropy at birth H0 as a function of the
age n (x axis). Figure 1 focuses on French women, but a quite similar picture
prevails also for men (see in the Appendix).
Several observations can be made, which allow us to illustrate the results

obtained in the previous sections.
A first important observation is that, based on the survival conditions pre-

vailing in 1816, 1900 and 1950, there exists a strictly positive low threshold age
a1 below which a rise of dn reduces lifetime entropy at birth. However, when
considering the life tables for 1980 and 2016, that low threshold age has van-
ished to 0. That result is due to the strong fall of infant mortality in the second
part of the 20th century.
A second observation concerns the existence of a high threshold age a2,

beyond which a rise of the probability of death reduces lifetime entropy at
birth. That second threshold age is shown to have moved significantly to the
right, i.e. to higher values, when shifting from the 1816 life table to the 2016
life table.
Figure 1 thus shows that, during the major part of life, a higher probability

of death at a given age tends to increase lifetime entropy at birth. However,
the size of that age interval has tended to vary over time. That age interval
was much shorter when considering life tables of 1816 and 1900, because, at
those times, there was a low age interval, during childhood, in which a rise of dn
implied a fall of lifetime entropy, and, also, because, at those times, the second
threshold age was much lower, and around age 60. Under contemporary survival
conditions, the first threshold age has vanished to 0 and the second threshold
age is much higher, at about 80 years.
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Figure 1: Effect of a variation of dn on H0 as a function of the age n,
French women.

In order to have a more accurate view of those changes, Table 1 summarizes
the levels of the two threshold ages a1 and a2 for men and women, under the five
life tables under comparison. That table shows that the low threshold age has
tended to decrease over time, and to vanish to zero. This change is due to the
fall of infant mortality. As such, Table 1 illustrates well the above discussions
in the proof of Proposition 2. Table 1 also shows that the second threshold age
has tended to increase over time.

years women men
a1 a2 a1 a2

1816 6 years 60 years 6 years 60 years
1900 3 years 65 years 3 years 60 and 62 years
1950 1 year 73 years 1 year 68 years
1980 0 year 79 years 0 year 70 years
2016 0 year 81 years 0 year 81 years
Table 1: Threshold ages for women and men, France.

Another interesting observation concerning Table 1 is the lengthening, over
time, of the age interval during which a rise of the probability of death tends to
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increase lifetime entropy. That age interval can be measured as the difference
between the two threshold ages, i.e. a2 − a1. It was equal, for women, to 54
years in 1816, and is as large as 81 years for 2016. Thus the part of life during
which a rise of mortality increases lifetime entropy is now much larger than it
used to be in the past.
When considering Table 1, a quite surprising result consists of the exis-

tence of two high threshold ages for men in 1900. That result is due to the
non-monotonicity of the probability of death dn around ages 60-61 for French
men in 1900. That non-monotonicity explains the non-uniqueness of the high
threshold age. Note that this does not infirm the validity of Proposition 2,
since Proposition 2 assumed the monotonicity of the mortality age-pattern dur-
ing adulthood, which was a suffi cient condition for the uniqueness of the high
threshold age a2. The 1900 life table does not satisfy that monotonicity condi-
tion for adult mortality.

5 Further decompositions

In order to better understand the forces at work behind the dynamics of thresh-
old ages a1 and a2 over time, Figures 2a and 2b show, for respectively 1816 and
2016, the decomposition of the net effect into its two components, whose levels
are here presented in absolute values. The first component (LHS of the condi-
tion in Proposition 1) is W (sn,0) +W (dn), that is, the quantity of information
revealed by the event of a death at age n, whereas the second component (RHS
of the condition in Proposition 1) is Hn+1

sn+1,0
, that is, lifetime entropy at age n+ 1

divided by the probability to survive to that age.
Concerning the life table 1816, Figure 2a shows that, at low ages of life,

mortality was high, so that the quantity of information revealed by the event
of a death at age n is lower than the lifetime entropy at age n + 1 divided by
the probability to survive to that age, which explains why the net effect of a
variation of dn is negative at those low ages of life. Then, as the age goes up,
mortality falls, which leads to a rise of quantity of information revealed by the
event of a death at age n, which equalizes Hn+1

sn+1,0
at the first threshold age a1.

Then, during about 50 years, the first component dominates the second one,
explaining that the rise of dn raises lifetime entropy at birth. The two curves
cross once again around age 60, which is the threshold age a2. Above that age,
the second component Hn+1

sn+1,0
exceeds the first one, i.e. W (sn,0) + W (dn), so

that a rise of dn has, at those high ages, the effect of decreasing lifetime entropy.
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Figure 2a: Decomposition of the
effect of dn on H0 into the two
components, French women, 1816.

Figure 2b: Decomposition of the
effect of dn on H0 into the two
components, French women, 2016.

As shown on Figure 2b, the overall picture is very different under the 2016 life
table. First, infant mortality is much lower, so that, even when considering very
young ages of life, the quantity of information revealed by the event of a death at
age n, W (sn,0) +W (dn), is larger than lifetime entropy at age n+ 1 divided by
the probability to survive to that age. As a consequence, the low threshold age
a1 equals zero, and the effect of a rise of dn is, since birth, to increase lifetime
entropy, unlike what used to be the case in the early 19th century (Figure 2a).
Figure 2b also shows that the effect of dn on H0 tends, during adulthood, to
decrease with the age, until the second threshold age is reached, and this pattern
is due to the decreasing gap between the two components, W (sn,0) + W (dn)

and Hn+1

sn+1,0
. As age goes up, the quantity of information revealed by the event of

a death goes down, and at the same time the decrease of the survival probability
sn+1,0 pushes the second component up. The two curves cross at the second
threshold age a2, beyond which a rise of the probability of death will tend to
reduce rather than increase lifetime entropy.
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6 Concluding remarks

The relation between the probability of death at a given age and lifetime entropy
is not trivial: depending on the age, a rise of the probability of death may either
increase or decrease lifetime entropy, leading to a larger or a smaller risk about
the duration of life.
In order to examine that relationship, this paper first derived a necessary

and suffi cient condition under which a rise of the probability of death at a given
age increases lifetime entropy measured by Shannon’s entropy index defined to
the base 2. That condition is actually quite intuitive: a rise in the probability of
death at age n increases lifetime entropy at age k ≤ n if and only if the quantity
of information revealed by the event of a death at age n, measured, by means of
Wiener’s entropy, by W (sn,k) +W (dn), exceeds lifetime entropy at age n + 1
divided by the probability to survive from age k to age n+ 1.

Then, in a second stage, we used that condition to show the existence of two
threshold ages a1 and a2. When the age is below a1, a rise of the risk of death
decreases lifetime entropy at birth, whereas when the age lies between a1 and
a2, it increases lifetime entropy at birth. Then, for ages exceeding a2, a rise in
the probability of death reduces lifetime entropy.
Finally, using French life tables over the last two centuries, we showed that

the first threshold age a1 has tended to decrease over time, with the decrease
of infant mortality. Whereas it used to be about 6 years in 1816, it is as low
as 0 year in 1980 and after. On the contrary, the threshold age a2 has tended
to increase in the last two centuries, from about 60 years in 1816 to 81 years
in 2016. As a consequence of those two patterns, the age interval between a1

and a2, in which a rise in dn causes a rise of H0, has been widening over time,
from about 54 years in 1816 to 81 years in 2016. Hence, in comparison to more
distant epochs, an increasingly larger period of life is characterized by a positive
relation between the risk of death and lifetime entropy.
All in all, this study shows that the relation between the risk of death and

lifetime entropy varies with the age, and that this relation has also changed over
the last two centuries. The existence of a unique strictly positive threshold age,
as studied in Zhang and Vaupel (2009), dates back to the second part of the
20th century. Before that, there used to be another, lower, threshold age, below
which a rise of mortality risk leads to a fall of lifetime entropy.
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8 Appendix

Figure A1: Effect of a variation of dn on H0 as a function of the age
n, French men.
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