
The Do’s and Don’ts of a Do-file∗

Emmanuel Milet†

Before starting: Is your Stata updated? Type update query in the command window
and update it.
Do-files and datasets should be saved in the same folder. Graphs and logs can eventually
be stored in a subfolder. The folder name should not include any blank space. It might not
change anything, but programming softwares usually don’t like blank space, so avoid it as
much as possible.
To get started on the right foot:

1. Give explicit titles to your do files

2. Enumerate the do-files

Example: 0-master.do, 1-merge.do, 2-stylized-facts.do, etc. . .
You can then organize them in sub-do-files: if you have different set of stylized facts, you
could have: 2.1-stylized-facts-geography.do, 2.2-stylized-facts-count.do etc. . . . Now you can
start writing your do-file. One thing you have to keep in mind: your do-file will certainly, at
some point in your research, be read by someone else. Imagine having to understand a code
with no comments, no indications whatsoever. . . a nightmare. Then, imagine you reading
your own code a year after last modifying it: no comments, no indications. . . . You’ve just
wasted two days reading and understanding your own code! To avoid that, try to apply, as
much as possible, the following recommendations:

1 Comments

The first thing you should do when starting a new do-file, is write a small paragraph at
the beginning of the do-file that explicitly describes what the program does. Mention all
the database used (especially for the 1-merge.do), the stylized facts produced, the database
output etc. . . All along your program, add as many comments as necessary: explain why you
scale a variable, indicate the dataset you use in a merge before doing it (”we merge with
dataset 1 to get these variables:. . . ”).

∗I thank Remi Bazillier, Mathieu Couttenier, Matthieu Crozet, Julien Vauday and Anna Zagrajczuk-Ray
for helpful comments on previous versions of this document.
†Paris School of Economics (Université Paris 1)

1

2 Memory

You need to clear your Stata from all previous macros or matrix defined: capture clear
matrix, clear all etc. . . The capture command allows the program to run even if it encoun-
ters an error. Be cautious with this command as you might want your program to actually
stop if something goes wrong. This can however be useful if you are running many regres-
sions that take time (say several hours per regression). You don’t want your program to stop
just because there is a tiny error in one command line (you mispelled a variable name for
instance). You want it to get to the next regression, and you’ll come back to the problematic
one later. To do so, write capture at the beginning of you line

3 Directory and Global variables

Define the directory in which you have saved you dataset and do-files. A useful trick is
to define a global variable and affect the directory path to your global variable. A global
variable is a variable which is not directly created by Stata (you don’t see it on the left
side of the Stata window). To call a global variable, use the sign $ before the variable. For
example:

2

Now, to use any do-file or dataset present in this directory, you just need to type: use
dataset1, clear instead of use c:/research/data/dataset1, clear. Same for saving a
dataset.

4 General Presentation

In the new Stata11, do-files are now available in color. People familiar with other program-
ming languages still wonder why it took so long for Stata to implement this minor change,
but here it is. Another important thing that makes your code tractable is the overall layout.
Give explicit titles to important parts of you code, such as: Merging, General Statistics,
Labels, Regression in Cross-section, etc. . . and maybe more important, write these titles in
the following way:

Another nice way of organizing your code deals with loops. Whether you use a ”foreach”

3

loop, or a usual loop, you should offset the instructions inside the loop.

A useful command to make your code nicer and easier to read is the #delimit command.
It allows you to write a command on several lines. It works like this: #delimit ; means
that the following command will be finished when Stata encounters the sign ”;”. To go back
to the usual way Stata works, type: #delimit cr. It is especially usefful for graphs. Here
is an example of how to use this command:
Example:
Note that in the example the code is offset to the right, to ease the reading.

5 Variable Names and Labels

One of the first thing you’re going to do while playing with your new dataset is create vari-
ables. You will probably create tons of variables, sometimes just for the fun of it, sometimes
beccause you really need them. In any case, follow this simple rule: make up your own

rule and stick to it !. What does it mean ? It means you should :

1. Give explicit names

2. Always follow the same pattern

By pattern I mean the way you write the name of your newly created variables. For instance,
if you want to add numbers at the end of the name, say export99, export00, export01, then
stick to the rule : ”‘name of the variable”’ & ”‘two digits”’, and try to apply that rule for
further variables. Or, you might prefer to insert an underscore between the name and the
numbers: ”‘name of the variable”’ & & ”‘two digits”’. That’s fine, but please, don’t mix
both. You’ll end up with variables like : ”‘export99”’ and ”‘export 99”’, and you will not
remember why they are so different if their names are so similar.
Regarding the labels, well nothing new here: make labels ! My advice is that you make a
do-file that contains only labels. It avoids your code from being jammed up by tons of label
declarations, and makes any modification really straightforward: open your do-file, change
the label, save it, and then run the do-file.

4

6 Regression Tables

Regression tables are one of the most important output of your do-file, so don’t mess with
them: use labels, don’t use stars to indicate the significancy levels (looks like you’re rating
restaurants for a tourist guide). Stars take a lot of place in the columns, and the less you put
into those columns, the easier it is going to be to read them. Your footnote can (should) be
quite large. Apart from the significant levels, include indications on the use of fixed effects
or dummy variables, the number of years, countries, the econometric strategy employed in
each column, details about some of the variables etc. . . These information are not crucial to
the understanding of your table, so instead of writing them down in the core of your article,
put them in the footnote: you will save time for people reading your article.

A quick way to get nice tables is to use the eststo and esttab. Esttab is in fact a
simplified version of the estout command1.

These commands display your regression tables the way you want them. You can specify
the symbols for the significant levels, whether you use labels or not (Yes!), if you want it in
the LaTex, cvs, html format etc. . . Many options are available, don’t hesitate to have a look
at the help file. Esttab produces estimation tables on the result window of Stata, with only
the information you asked for, and can export your regression tables in the chosen format. I
recommand you to do both: use esttab to display the regression table on your result window
(this way it is saved in your log), then export it. You can export them in a different format:
unless you’re a LaTex fanatic, you don’t want to see a table displayed in the LaTex format
on your Stata result window. . .

Global variable can also be very useful in your econometric specification when a set of
variable is recurrent. To avoid repeating the variables over and over again, define a global
variable that will account for these variables. Then add the variable you are mainly inter-
ested in. Here is a rather complete code to get nice tables using a global variable:

1For more informations on the esttab command, see the paper by Benn Jann (http://www.soz.unibe.
ch/content/about_us/jann/publikationen/e19610/e20677/files20678/esttab.pdf), and for more de-
tails on the estout command, see his other paper (http://www.soz.unibe.ch/content/about_us/jann/
publikationen/e19610/e20677/files20680/estout.pdf)

5

http://www.soz.unibe.ch/content/about_us/jann/publikationen/e19610/e20677/files20678/esttab.pdf
http://www.soz.unibe.ch/content/about_us/jann/publikationen/e19610/e20677/files20678/esttab.pdf
http://www.soz.unibe.ch/content/about_us/jann/publikationen/e19610/e20677/files20680/estout.pdf
http://www.soz.unibe.ch/content/about_us/jann/publikationen/e19610/e20677/files20680/estout.pdf

One important thing: all the code that follows the $ sign will be displayed in light blue
even if it does not involve only global variable. This is a slight ”bug” and should be corrected
in the coming version of Stata.

Another popular way of computing regression table is to use the outreg2 command. It
does basically the same job, but has different features compare to estout, some good and
some bad:

• + : It works with all regression commands and all versions of Stata. For obscure
reasons, eststo/estadd does not work well on StataMP.

• − : You have to write the outreg2 command after each regression command!

• − : If you want to export stored estimates, you have to use the estout command at
the end of your outreg2 command... (makes you wonder what’s the point of having
two procedures to do the exact same thing if they interact with each other...)

• − : outreg2 is only for exporting tables, it does not display them on the result screen,
thus does not save them on your log

The outreg2 command is as follows (where file1.txt is text file containing the result of the
previous regression) :

6

7 Graphics

Like regression tables , figures are a very important output of your do-file. It is crucial that
your graphs look nice, and attract the eye of the reader. You can save the same graph in
different formats. Note the use of the command graph export instead of graph save when
we save the graph in a different format.

A few recommandations:
First, Stata uses a colorized background for its figures: light blue. It is ugly. You have
a nice paper written on white pages, and your graph shows up with its bluish background
color! Here is the option command to get rid of the background color and the frame color
(that’s right, Stata also applies a color for the frame of the graph region): bgcolor(white)
graphregion(color(white))

Second, something I find useful is not to give titles to your graphs, you can include
them directly when you write your paper. One thing Stata is not very good at is dealing
with long titles Just like the footnote of the regression tables allowed you to include any
not-so-interesting information, the footnote of the graphs can do the same: explain how to
read the graph. This is particularly relevant if your graph is not a simple ”‘twoway plot”’
of two variables2. You will want to use the #delimit command introduced earlier in your
graph commands3.

8 Master file

The purpose of the master do-file is to organize the sequence in which you want to execute
your do-files. It is especially useful when you have many do-files. A usual master file looks
like this:

One thing to notice here is the use of the command run instead of do. Both commands

2To see many example of interesting graphs, check the following website: http://www.ats.ucla.edu/

stat/stata/library/GraphExamples/default.htm Click on a graph, and the stata code will appear.
3More on how to make graphs and organize regression tables can be found at John Ries’ website (http:

//strategy.sauder.ubc.ca/head/). Check also his advices on how to write an introduction.

7

http://www.ats.ucla.edu/stat/stata/library/GraphExamples/default.htm
http://www.ats.ucla.edu/stat/stata/library/GraphExamples/default.htm
http://strategy.sauder.ubc.ca/head/
http://strategy.sauder.ubc.ca/head/

execute the do-file, but the run command does not display any result on the screen, while
the do command does.

9 Miscellaneous tricks

This last section deals less with the do’s and dont’s of a do-file. Rather, it is a short descrip-
tion of useful command you should know and will make your life easier.

Set More Off Stata is a software that wants to make sure you are working when it is.
When the command you execute produces a lot of output on the Result window, Stata will
- at some point - stop and wait for you to press the Enter key or the Space bar before
proceeding forward. To avoid this, just write set more off at the beginning of your code.

Quietly The command quietly simply tells Stata to not show the execution of the com-
mand on the Result window. This is particularly useful when you want to create a lot of
variables from a loop, or from a tabulate procedure (to get dummy variables).

Collapse This command does exactly what it says: it collapses your database to the size
you want. It reduces the number of dimensions and can calculate many statistics based on
your original variables. It works like this:

8

Tag This command creates dummy variables that take the value 1 every time it encounters
a different value of the specified variable, or of a couple of variables. This is particularly
interesting when you deal with multiple dimensions datasets. For example, if you have a
dataset with the following dimensions: Year × Country × Product. you want to count the
number of countries you have. the tag command will create a variable that takes the value
1 each time it encouters a different country. It prevents you from collapsing your database.

Group The group command works with the same idea as the tag command. It creates
a unique variable (as opposed to a serie of dummy variables) that takes a different value
everytime it encounters an occurence of a variable or of a group of variables. In panel re-
gressions, string variables cannot be used a fixed effects, one way to get around this is to
create a group variable for instance. Here is the (very simple) code and an example of what
your variable looks like:

9

	Comments
	Memory
	Directory and Global variables
	General Presentation
	Variable Names and Labels
	Regression Tables
	Graphics
	Master file
	Miscellaneous tricks

